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ABSTRACT 

We investigated the mechanism underlying somatostatin-induced increase in [Ca2*]j 

leading to insulin release in the presence of arginine vasopressin (AVP) in clonal p-cell HIT-

T15. Somatostatin increased [Ca2*]j and insulin release in a diphasic pattern, characterized 

by a sharp and transient increase followed by a rapid decline to the sub-basal level. 

Pretreatment with pertussis toxin, which inactivates Gi/Go, abolished the effects of 

somatostatin. U-73122, an inhibitor of phospholipase C, antagonized somatostatin-induced 

increase in [Ca2*]j. In Ca2*-free environment, somatostatin still increased [Ca2*]it whereas 

depletion of intracellular Ca2* stores with thapsigargin, a microsomal Ca2* ATPase inhibitor, 

abolished somatostatin's effect. In the presence of bradykinin, another Gq-coupled receptor 

agonist, somatostatin also increased [Ca2*]j, but not in the presence of isoproterenol (a Gs-

coupled receptor agonist) or medetomidine (a Gi/Go-coupled receptor agonist). Utilizing 

selective agonists for each somatostatin receptor subtype (SSTR1-5) and PRL-2903, a 

specific SSTR2 antagonist, we characterized the receptor mediating the somatostatin 

signaling. In the presence of AVP, treatment with the SSTR2 agonist L-779,976 resulted in 

responses similar to those seen with somatostatin. L-779,976 increased both [Ca2*} and 

insulin release in a dose-dependent manner. Treatment with L-779,976 alone did not alter 

[Ca2*]j or basal insulin release. In the presence of AVP, all other somatostatin receptor 

agonists failed to increase [Ca2*} and insulin release. The effects of somatostatin and L-

779,976 were abolished by PRL-2903. Administration of antibody against the (3 subunit of 

Gi/Go into single cells inhibited the increase in [Ca2*]; by somatostatin, but antibodies 

against Gia1/Gia2 and Gia3/Goa failed to do so. Somatostatin increased PIP2 synthesis 

from PIP in the presence and absence of AVP, whereas an increase in IP3 synthesis was 

observed only in the presence of AVP. Taken together, our study strongly suggests that 

activation of the SSTR2 coupled to Gi/Go by somatostatin increases PIP2 synthesis through 

the Py dimer. The PIP2 generated by somatostatin serves as additional substrate for 

preactivated PLC-p, which hydrolyzes PIP2 to form IP3l leading to Ca2* release from the 

endoplasmic reticulum and insulin release in clonal p-cell HIT-T15. The increases in [Ca2*]i 

and insulin release are due to a cross-talk between Gq and Gi/Go, although not limited to 

the AVP and somatostatin receptors. 
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CHAPTER I GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation is written in an alternative thesis format. It contains a general 

introduction, three research papers, a general discussion, a list of references cited in the 

general introduction and discussion, and acknowledgments. The general introduction 

includes a research objective, background information, and literature review. Chapter II, 

"Somatostatin-induced paradoxical increase in intracellular Ca 2* concentration and insulin 

secretion in the presence of arginine vasopressin in clonal p-cells HIT-T15", and Chapter III, 

"SSTR2 mediates the somatostatin-induced increase in intracellular Ca2* concentration and 

insulin secretion in the presence of arginine vasopressin in clonal p-cell HIT-T15", have 

been accepted for publication in the Biochemical Journal and Life Sciences, respectively. 

Chapter IV, "Somatostatin increases phosphatidylinositol 4,5-bisphosphate formation via Py 

dimer of Gi/Go in clonal p-cells HIT-T15: mechanisms for its paradoxical increase in insulin 

release" has been submitted for publication in the Journal of Biological Chemistry. 

This dissertation contains the experimental results obtained by the author during his 

graduate study under the supervision of his major professor, Dr. Walter H. Hsu. 

Research Objective 

The hormone insulin is synthesized and released from pancreatic p-cells, and is the 

most important regulator of elevated blood glucose levels. The mechanisms that regulate 

insulin secretion are rather complex from an endocrine point of view. Although an increase 

in blood glucose levels is one of the most potent stimulators for insulin release, several 

hormones act directly or indirectly in the pancreas to stimulate or inhibit its release. 

Inhibition of insulin secretion by somatostatin (SRIF) has been well characterized in studies 

utilizing the whole pancreas, pancreatic islets and several p-cell lines. Arginine vasopressin 

(AVP), a hormone normally found in the posterior pituitary gland, is also present in the 

pancreas. We previously demonstrated AVP's ability to stimulate the release of glucagon 

and insulin from the rat pancreas, in the a-cell line lnR1G9 and p-cell line RINmSF. 
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The research presented in this dissertation focuses on a novel response to SRI F in 

an insulin secreting cell line HIT-T15, in which SRIF induces a paradoxical increase in 

[Ca2*}, leading to insulin release in the presence of AVP. The objectives of this study are: 1 ) 

Characterize the SRIF receptor subtype that mediates the increase in [Ca2*} and insulin 

release, 2) Characterize which subunit of Gi/Go mediates the intracellular signaling by SRIF, 

and 3) Measure PIP2 and IP3 mass formation by SRIF in the presence of AVP. In these 

studies we have characterized a novel mechanism by which SRIF stimulates insulin release 

in the presence of AVP, through a cross-talk between Gq and Gi/Go. 

Background and Literature Review 

This section provides background information related to the studies that are 

presented in the dissertation: 1 ) Regulation of insulin secretion; 2) Heterotrimeric G-proteins; 

and 3) Signal transduction by AVP and SRIF. 

The endocrine pancreas 

During development, the pancreas arises from the gut endoderm as two buds, the 

duodenal and the hepatic diverticula. The dorsal bud develops from the dorsal wall of the 

duodenum and later forms the entire body, tail, and part of the head of the pancreas. The 

remaining posterior portion of the head is derived from the ventral bud, which arises from 

the primitive bile-duct. The glandular tissue of the pancreas is developed by budding and 

branching of the primordial epithelial cell cords. This budding result from cell division in a 

plane perpendicular to the axis of the iumen of the forming ducts, disrupting tight-junction 

complexes and promoting cell separation. The endocrine pancreas is formed by the islets of 

Langerhans, which were first described in 1869 by Paul Langerhans. The islets originate 

from specialized buds of the same epithelial tissue that gives rise to the pancreatic ducts 

and acinar cells. The endocrine cells generally separate at an early stage and undergo 

independent differentiation, although some retain their original connection with the ducts. 

The islets constitute 1-2 % of the pancreas and the main cell types present are IB-

cells (secreting insulin), a-cells (secreting glucagon), 5-cells (secreting SRIF) and PP-cells 

(secreting pancreatic polypeptide), occurring in the ratio 68:20:10:2 % (Rahier, 1988). 

During embryonic development, a-cells usually are the first to develop and the PP-cells the 

last. The core of each islet consists primarily of p-cells surrounded by a cortex of a- and 5-
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cells or, in the posterior region of the head, of PP-cells (Orci, 1985). The cell types of islets 

can be distinguished by various histological stains, such as safranin and methyl green (a-

cells red and p-cells green), Gomori's aldehyde fuchsin trichrome (p-cells deep violet, a-

cells red, and 5-cells green), or by silver impregnation methods of Grimelius (a-cells) and 

Davenport (8-cells). In addition to histological techniques, electron-microscopy of secretory 

granules, specific immunocytochemical stains and in situ hybridization for hormone products 

have been developed. 

Islets are innervated by a complex network of sympathetic and parasympathetic 

nerves, and are vascularized by direct arteriolar blood flow. Although they constitute only 1-

2 % of the pancreas, they receive approximately 20 % of total pancreatic blood flow (Lifson 

et al., 1985). Afferent arterioles, arising from branches of the splenic and pancreatic-

duodenal arteries, may supply acinar tissue before reaching the islets. Within the islets, the 

arterioles branch to form a dense mesh of wide, anastomosing capillary, reminiscent of the 

renal glomerulus. Arterioles enter the core of p-cells to branch into a portal system of 

capillaries, which carry blood from p-cells to surrounding cells (Bonner-Weir and Orci, 1982). 

Cortex cells are not only exposed to blood-borne nutrients but also secretory products of p-

cells, particularly insulin. In addition to the circulatory route, direct cell-to-cell 

communications through gap junctions are present. Gap junctions are specialized junctions 

that can allow passage of electrical impulses, ions, and low molecular weight molecules 

(<1000) (Meda et al., 1984). The pancreas receives its extrinsic innervation from the 

coeliac plexus. 

Islets play a central role in hormonal control of fuel metabolism and particularly of 

glucose homeostasis. Maintenance of a normal plasma glucose concentration during 

periods of food consumption and fasting requires a precise balance between glucose 

production and utilization. Although control of glucose homeostasis involves many 

hormonal and neural factors, insulin and glucagon are the major determinants of this control. 

Insulin is secreted by p-cells in response to nutrients to promote energy storage in targets 

organs (liver, skeletal muscle, and adipose tissue); glucagon release by a-cells is then 

inhibited. In the postabsorptive state, while insulin secretion falls, glucagon is stimulated, 

which activates glycogenosis and gluconeogenesis; this reciprocal change in plasma 

insulin-glucagon ratio will favor energy store consumption. Biosynthesis and secretion of 
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these two hormones must be tightly regulated to match fuel production and delivery to 

metabolic demands. 

Insulin synthesis, secretion and metabolism 

Insulin is synthesized and stored within pancreatic p-cells where it is released upon 

stimulus. In humans, the gene encoding preproinsulin is located on the short arm of 

chromosome 11 (Bell et al., 1980). It has 1355 base pairs and its coding region consists of 

three exons: the first encodes the signal peptide at the N-terminus of the preproinsulin, the 

second the B chain and part of the C peptide, and the third the remaining of the C peptide 

and the A chain. Transcription and splicing to remove the sequences encoded by introns 

yields a mRNA of 600 nucleotides, which after translation, gives rise to the preproinsulin 

(109 amino acids). The preproinsulin is converted to proinsulin after cleavage by proteolytic 

enzymes in the cisternal space of the rough endoplasmic reticulum. The proinsulin contains 

the A and B chains (21 and 30 amino acids respectively) of insulin, which are linked by C 

peptide (30-35 amino acids) (Kemmler et al., 1972). The major function of C peptide is to 

align the disulfide bridges that link the A and B chains so the molecule is folded properly for 

cleavage. Proinsulin is transported to the Golgi apparatus (Orci et al., 1987), where it is 

packed into vesicles. The conversion of proinsulin into insulin begins in the Golgi apparatus 

and continues within the maturing secretory granules through the sequential action of 

prohormone convertases 2 and 3, and carboxy peptidase H (Mutton, 1994). The actions of 

these enzymes on proinsulin cleaves the C peptide chain giving rise to insulin (Fig. 1 ), which 

are stored in granules and released upon stimulus. 

Insulin secretion occurs in a coordinated matter during exocytosis, in which insulin 

containing granules move close to the cell membrane, until fusion of granules and 

membrane promotes the release of insulin into the blood stream (Lacy, 1970). Following 

incorporation of the granule/membrane, the expanded membrane is partially reabsorbed into 

the cell by endocytosis and recycled back to the Golgi apparatus. The role of cytoskeletal 

components, mainly microtubules and microfilaments in the translocation of insulin granules 

inside the cell has been extensively studied. However, the precise mechanism by which 

metabolic signals developed during stimulation of insulin secretion are translated into 

granule movement and exocytosis remains unknown. Treatment of p-cells with microtubule 

inhibitors such as colchicines, vinblastine and nocodazole inhibits glucose-stimulated insulin 

secretion (Howell, 1984). Other contractile proteins such as actin and myosin participate in 
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Porcine 

Bovine 

Figure 1. The primary structure of human insulin (Modified from Wood and Gill, 1997). 

the insulin secretory pathway. Actin, the component of microfilaments is present in cells in 

two forms: a globular form of 43 kDa and a filamentous form, which associate to form 

microfilaments. Involvement of microfilaments in insulin secretion derives partly from 

observations that insulin secretion is inhibited by cytochalasin B and phalloidin, both of 

which interfere with microfilament formation (Howell, 1984). Both myosin light chain and 

heavy chain are found in rat islets at concentrations that are considerably higher than those 

present in the liver, and have been localized by immunofluorescence to both a- and p-cells. 

It is possible that microfilaments, microtubules and myosin act together to transport insulin 

granules along the cytoplasm. Other molecules such as kinesin and dynein may interact 

with microtubules in the transport of granules, since these proteins are responsible for 

organelle transport in a variety of cell types. 

Insulin is normally degraded within the liver and kidneys, with a plasma half-life of 

approximately 5 min in humans. The major enzyme responsible for insulin degradation is 

hepatic glutathione insulin dehydrogenase, which splits the hormone into its A and B chains. 

Glutathione, a cysteine-containing tripeptide acts as a cofactor for the transhydrogenase to 

reduce the individual half-cysteine moieties of the disulfide bonds (Duckworth, 1988). 
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Regulation of insulin secretion 

The main physiological determinant for insulin secretion is blood glucose 

concentration, although metabolic, endocrine, neuronal and pharmacological agents can 

also promote insulin secretion. Through GLUT-2, glucose is transported into p-cells and 

phosphorylated by glucokinase to generate glucose 6-phosphate, which undergoes 

glycolysis to produce ATP. Generation of ATP closes ATP-sensitive K* channels in the 

membrane, causing depolarization, leading to Ca2* influx through voltage-dependent 

channels. The increase in [Ca2*} then triggers insulin secretion (Ashchroft et al., 1984). 

Glucose-stimulated insulin secretion is biphasic, comprising a rapid first phase lasting 5-10 

min, followed by a prolonged second phase, that continues for the duration of the stimulus. 

The shape of the glucose-response curve is determined by the activity of the glucokinase, 

which dictates the rate-limiting step for glucose metabolism (Van Schaftingen, 1994). 

Amino acids such as leucine and arginine can also stimulate insulin secretion, 

although the mechanism is not well understood. In the case of arginine, the inward 

movement of its cationic charge may depolarize the cell membrane and open voltage-

dependent Ca2* channels (Hermans et al., 1987). Leucine may generate ATP through its 

metabolism, and promote closure of ATP-sensitive K* channels in a similar manner to 

glucose (McClenaghan and Flatt, 2000). Several hormones and neurotransmitters can also 

influence insulin secretion. Secretagogues such as glucagon, arginine vasopressin, gastric 

inhibitory peptide, cholecystokinin, opioids, vasoactive intestinal peptide and glucagon-like 

peptides can stimulate insulin secretion, while SRIF, pancreastatin, galanin and 

neuropeptide Y can inhibit insulin secretion (McClenaghan and Flatt, 1999). The autonomic 

innervation of pancreatic islets also plays a role with its vagal inputs stimulating, and 

sympathetic endings and catecholamines present in the circulation inhibiting insulin 

secretion. The stimulatory effect of the parasympathetic system is mediated by muscarinic 

cholinergic receptors, while circulatory or locally released catecholamines exert their 

inhibitory action via a2 adrenergic receptors (Ahren, 2000; Sivitz et al., 2001 ). The effect of 

pharmacological agents such as sulfonylureas, which promotes closure of ATP-sensitive K* 

channels by binding to receptors closely associated to these channels leads to 

depolarization and subsequent insulin secretion (Zunkler et al., 1988). Atypical 

sulfonylureas derivative, such as diazoxide, a potent but reversible inhibitor of insulin 

secretion, act by opening ATP-sensitive K* channels (Sturgess et al., 1988). 
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Development of clonal hamster p-cells (HIT) 

In the early 1980s, most of the understanding of insulin biosynthesis and p-cell 

metabolism was derived from in vitro studies utilizing isolated islets, either intact or 

dissociated in monolayer culture. Such studies were limited by difficulties in the preparation 

of even small quantities of islets; cellular and hormonal heterogeneity within islets; and rapid 

loss of insulin production in vitro. In rats, the development of a transplantable insulinoma 

(Chick et al., 1977) resulted in the purification and characterization of preproinsulin mRNA 

(Duguid et al., 1976), and cloning and sequence analysis of cDNA (Villa-Komaroff et al., 

1978). The need for permanent cell lines that possessed functions characteristic of 

differentiated p-cells that would facilitate in vitro studies, lead Robert Santerre and 

colleagues to develop the clonal hamster p-cell (HIT) (Santerre et al., 1981). This cell line 

was established by Simian virus 40 transformation of Syrian hamster pancreatic islet cells. 

Analysis of cytoplasmic insulin by fluorescent antibody staining demonstrated that insulin 

was present in all cells. Hamster insulin was detected from extracts of HIT cell cultures 

through radioimmunoassay, radioreceptor assay, and bioassay. Stimulation of insulin 

secretion was confirmed by exposure to glucose, glucagon and IBMX, where as inhibition of 

insulin secretion was demonstrated by exposure to SRIF and dexamethasone. 

Development of the HIT cell line originated a unique model system to study p-cells, due to 

its ability to provide unlimited material for biochemical studies of membrane receptors or 

mRNA processing. The HIT cell line became a popular and well-accepted model to 

investigate mechanisms controlling insulin secretion. The main characteristic of glucose-

stimulated insulin release by HIT cells was similar to those of normal islets (Ashcroft et al., 

1986). 

HIT cells have been extensively used in the study of signal transduction in p-cells, 

such as the effect of secretagogues on [Ca2*]j and insulin secretion (Hughes and Ashcroft, 

1988), cloning of the ai subunit of voltage-dependent Ca2* channels (Seino et al., 1992), 

regulation of insulin gene transcription by glucose (Olson et al., 1995), regulation of insulin 

secretion by IGF-1 (Zhao et al., 1997). The role of PKC during AVP-induced insulin 

secretion has been reported in HIT cells (Hughes et al., 1992). Inhibition of insulin secretion 

by SRIF is associated with decreases in cAMP and [Ca2*} through inhibition of Ca2* influx 

via L-type voltage-dependent Ca2* channels (Hsu et al., 1991), opening ATP-sensitive K* 

channels (Ribalet and Eddlestone, 1995), and activation of the Ca2*-dependent protein 

phosphatase calcineurin (Renstrom et al., 1996). 
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Regulation of insulin secretion by AVP and SRIF 

Chemistry and biosynthesis of AVP and SRIF 

Arginine vasopressin (AVP) is a nonapeptide hormone (Fig. 2) folded into a ring 

through a disulfide bridge at positions 1 and 6, leaving a terminal tripeptide side chain. AVP 

is synthesized within the cell bodies of neurons in the pars nervosa, stored in 

neurosecretory granules and released from the axonal endings (Russe! et al., 1990). A 

number of AVP-like peptides have been described in different species. All of them contain 

cysteine residues in positions 1 and 6 and have a disulfide bridge and conserved amino 

acids (Asn, Pro, Gly) in positions 5, 7 and 9. In mammals, these peptides contain Arg in 

position 8 and thus the term arginine vasopressin. In addition to AVP, in swine, the arginine 

can be replaced with lysine, and therefore called lysine vasopressin (LVP). AVP is a 

product of a preprohormone with 168 amino acids that is synthesized and incorporated into 

ribosome. During synthesis, a signal peptide (residues -23 to -1) is removed to form pro-

AVP, then is translocated through the rough endoplasmic reticulum and incorporated into 

large membrane-enclosed granules. The prohormone consists of three domains: AVP 

(residues 1-9), AVP-neurophysin or neurophysin II (residues 13-105) and AVP-glycopeptide 

or copeptin (residues 107-145). In secretory granules, the prohormone is sequentially 

cleaved by endopeptidase, exopeptidase, monooxygenase and lyase to form AVP. AVP-

neurophysin contains a sequence of more than 90 amino acids that is identical in some 

species (Land et al., 1983). AVP secretion can be induced by an increase in plasma 

osmolality, hypovolemia and hypotension, pain, nausea, hypoxia, and agents such as 

acetylcholine, histamine, dopamine, glutamine, cholecystokinin, and angiotensin II. An 

increase in plasma osmolality of about 2 % has been shown to cause a two- to three-fold 

increase in plasma AVP levels. In addition to the pituitary gland, AVP has also been found 

in the adrenal gland, cerebellum (Richter et al., 1990), ovary (Guldenaar et al., 1984), 

thymus (Geenan et al., 1986), testis (Guldenaar and Pickering, 1985) and pancreatic islets 

(Sanchez-Franco et al., 1986). 

SRIF, a tetradecapeptide, is synthesized from a large preproSRIF precursor 

molecule that is processed enzymatically to yield several mature products. cDNAs for 

preproSRIF molecules were first identified in 1980 followed by elucidation of the structure of 

rat and human SRIF genes in 1984 (Montminy et al., 1984; Shimon et al.,1997). 

Mammalian proSRIF consists of 92 amino acids that is processed predominantly at the C-
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Cys-Tyr-Phe-GIn-Asn-Cys-Pro-Arg-Gly-NHa 
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n 

Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys 

Figure 2. Structures of AVP and SRIF (Modified from Ganong, 1997). 

terminal segment to generate two bioactive forms, SRIF-14 and SRIF-28. The two peptides 

are synthesized in variable amounts by different SRIF-producing cells. SRIF-14 (Fig.2) 

predominates in pancreatic islets, stomach, neural tissues, and is virtually the only form in 

retina, peripheral nerves, and enteric neurons. SRIF-28 accounts for 20-30 % of total 

immunoreactive SRIF in brain, although it is not clear whether it is co-synthesized with 

SRIF-14 or whether it is produced in separate neurons. SRIF-28 is synthesized as a 

terminal product of proSRIF processing in intestinal mucosa cells that constitute the largest 

peripheral source of the peptide. Several genes encoding SRIF-like peptides have been 

identified (Hobart et al., 1980; Montminy et al., 1984; Shen and Rutter, 1984). The various 

forms observed in mammals are all derived from differential processing of a common 

precursor preproSRIF-l. A novel SRIF-like gene called cortistatin (CST), that gives rise to 

two cleavage products comparable to SRIF-14 and -28 was described in human and rat (De 

Lecea et al., 1996). These cleavage products consist of human CST-17 and its rat 

homologue CST-14 and human and rat CST-29. Unlike the broad distribution of the 

preproSRIF-l gene, expression of CST genes is restricted to the cerebral cortex. 

Secretion of SRIF can be influenced by a number of secretagogues ranging from 

ions and nutrients, to neuropeptides, neurotransmitters, classical hormones, growth factors, 

and cytokines (Patel, 1992; Reichlin, 1983). Some of these agents exert common effects on 

SRIF cells in different locations presumably by direct action, where others tend to be tissue-

selective. Membrane depolarization stimulates SRIF release from both neurons and 

peripheral SRIF-secreting cells, suggesting that this mode of release is a fundamental 

property of all SRIF containing cells (Patel, 1997). 
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Actions of AVP and receptors 

AVP has two major physiological roles: it induces the contraction or relaxation of 

vascular smooth muscle and promotes water movement across epithelial tissues. In this 

manner, AVP regulates body fluid volume, osmolality, and maintains normal blood pressure. 

AVP increases glycogenosis (Kirk etal., 1979), proliferation of the pituitary gland 

(McNichol et al., 1990), and secretion of clotting factors (Fuchs and Fuchs, 1984). An 

increase in adrenocorticotropic hormone (ACTH) (Robinson, 1987), thyroid-stimulating 

hormone (TSH) (Lumpin et al., 1987), and catecholamine secretion (Grazzini et al., 1996) 

has also been reported for AVP. In the pancreas, studies have demonstrated AVP's ability 

to increase glucagon and insulin secretion from a- and (3-cells, respectively (Chen et al., 

1994; Yibchok-anun et al., 2000). Behavior can be influenced by AVP, where it is involved 

in acquisition and maintenance of adaptation, and in the learning and memory process 

(Goodson and Bass, 2001 ). 

AVP receptors are classified according to the second messenger system coupled to 

them and the affinity of various AVP analogues. There are two types of AVP receptors, the 

Vi and V2 (Guillon et al., 1980). The V, receptor posses two subtypes, the V1a and V1b, 

because the binding properties of V1b to various vasopressin agonists and antagonists differ 

from those of V1a receptors (Schwartz et al., 1991 ). The V,a receptor, the most widespread 

subtype, is present in vascular smooth muscle, myometrium, the bladder, adipocytes, 

hepatocytes, platelets, renal medullary interstitial cells, vasa recta in the renal 

microcirculation, epithelial cells in the renal cortical collecting duct, spleen, testis, and many 

CNS structures (Bimbaumer, 2000). The V1b receptor is present in the adenohypophysis, 

kidney, thymus, heart, lung, spleen, uterus, breast, as well as in pancreatic islets (Lolait et 

al., 1995; Saito et al., 1995). The V1b receptors have been pharmacologically characterized 

in the rat adrenal medulla (Grazzini et al., 1996), rabbit tracheal epithelium (Tamaoki et al., 

1998) and rat pancreas (Lee et al., 1995; Yibchok-anun et al., 1999). The V2 receptor is 

present mainly in the renal collecting duct system. 

AVP receptors belong to the seven-transmembrane family that is coupled to G-

proteins, containing seven hydrophobic transmembranes a-helices joined by different 

intracellular N-terminal and extracellular C-terminal domains. Both V1a and V1b receptors are 

coupled to Gq and signal through the PLC pathway (Jans et al., 1990), whereas the V2 

receptor is coupled to Gs, which activates adenylyl cyclase, leading to generation of cAMP 

(Thibonnier, 1992). The second intracellular loop of the V, receptor plays a key role in the 
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selective activation of Gq and the third intracellular loop of the V2 receptor is responsible for 

recognition and activation of Gs (Barberis et al., 1998). 

Actions of SRIF 

SRIF-producing cells are present in high densities throughout the central and 

peripheral nervous systems, endocrine pancreas, and in the gut. A small number are found 

in the thyroid, adrenal, and submandibular glands, kidneys, prostate, and placenta (Patel, 

1992; Reichlin, 1983). Gastrointestinal SRIF cells are of two types: S cells in the mucosa 

and neurons that are intrinsic to the submucous and myenteric plexuses (Hokfelt et al., 

1975). In the pancreas, SRIF cells are confined to the islet and found in 8-cells in close 

proximity to insulin, glucagon, and pancreatic polypeptide-producing cells (Dubois, 1975). 

Within the thyroid, SRIF coexists with calcitonin in a subpopulation of parafollicular cells 

(Reichlin, 1983). In the rat, the gut accounts for 65 % of total body SRIF, the brain for 25 %, 

the pancreas for 5 %, and the remaining organs for 5 % (Patel and Reichlin, 1978). 

In the brain, SRIF functions as a neurotransmitter with effects on cognitive, 

locomotor, sensory, and autonomic functions (Epelbaum et al., 1994). It inhibits the release 

of dopamine from the midbrain and norepinephrine, thyrotropin-releasing hormone (TRH), 

corticotropin-releasing hormone, and endogenous SRIF from the hypothalamus. In addition, 

it inhibits both basal and stimulated secretion of growth hormone, thyroid-stimulating 

hormone (TSH), and islet hormones (Patel, 1992). In the gastrointestinal tract it inhibits the 

release of virtually every gut hormone that has been tested. SRIF stimulates migrating 

motor complex activity (Reichlin, 1983). The effects on the thyroid include inhibition of TSH-

stimulated release of thyroid hormones and calcitonin from parafollicular cells. The adrenal 

effects consist of the inhibition of angiotensin II stimulated aldosterone secretion and the 

inhibition of acetylcholine-stimulated medullary catecholamine secretion. In the kidneys, 

SRIF inhibits the release of renin stimulated by hypovolemia and inhibits AVP-mediated 

water absorption (Patel, 1992). In contrast to its inhibitory action on secretion, the 

antiproliferative effects of SRIF were later recognized (Weiss et al., 1981 ) and came about 

largely through use of long-acting analogs such as octreotide in the early 1980s for 

treatment of hormone hypersecretion from pancreatic, intestinal, and pituitary tumors 

(Lamberts et al., 1991; Weckbecker et al., 1993). It was found that SRIF not only blocked 

hormone hypersecretion from these tumors but also caused variable tumor shrinkage 

through an additional antiproliferative effect The antiproliferative effects of SRIF have since 
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been demonstrated in normal dividing cells, e.g., intestinal mucosal cells (Reichlin, 1983), 

activated lymphocytes (Aguila et al., 1996), cytokines (Karalis et al., 1994), as well as in 

tumors (Weckbecker et al., 1993). The diverse effects of SRIF can be explained by its 

inhibitory effects on two key cellular processes: secretion and cell proliferation. 

The pronounced ability of SRIF to block regulated secretion from many different cells 

is due in part to inhibition of two key intracellular mediators, cAMP and Ca2*. SRIF inhibits 

secretion stimulated by cAMP, Ca2* ionophores (A23187, ionomycin), the Ca2* channel 

agonist Bay K 8644, IP3, and extracellular Ca2* in permeabilized cells (Luini and de Mattel's, 

1990; Patel, 1992; Patel et al., 1992; Renstrom et al., 1996). These observations suggest 

that SRIF, independent of any effects on cAMP, Ca2*, or any other known second 

messenger, is able to inhibit secretion via this distal action. This effect appears to be 

mediated via a G-protein-dependent inhibition of exocytosis and is induced through SRIF-

dependent activation of the protein phosphatase calcineurin (Renstrom et al., 1996). A 

similar distal effect on the secretory process has been shown for other inhibitory receptors, 

e.g., ̂ -adrenergic and galanine, and suggests that phosphorylation-dephosphorylation 

events rather than the Ca2* signal play a key role in the distal steps of exocytosis (Renstrom 

et al., 1996). 

Pharmacology of SRIF receptors 

The effects of SRIF are mediated through the seven-transmembrane receptor family 

that signals via Gi/Go and comprise five distinct subtypes (SSTR1-5) that are encoded by 

separate genes segregated on different chromosomes. The five hSSTR subtypes bind 

SRIF-14 and -28 with nanomolar affinity (Table 1 ). hSSTR1-4 bind SRIF-14 > -28, whereas 

hSSTRS exhibits 10- to 15-fold selectivity for SRIF-28 compared to SRIF-14 (Patel, 1997; 

Patel and Srikant, 1994). The first clinically useful compound to emerge was the 

octapeptide analog SMS201-995 (SMS, octreotide), which was introduced into clinical 

practice in 1983 for treatment of pituitary, pancreatic, and intestinal tumors and has 

remained the treatment of choice for SRIF analog therapy (Bauer et al., 1982). SMS, along 

with BIM23014 (Lanreotide), the octapeptide RC160 (Vapreotide), and the hexapeptide 

MK678 (Seglitide), has been shown to display high affinity for SSTR2 and SSTR5 (Table 1) 

and moderate affinity for SSTR3 (Bruns et al., 1996; Patel, 1992; Patel et al., 1995). 
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Table 1. Binding selectivity of endogenous SRIF-like peptides, short peptide analogs, and 

nonpeptide agonists (Modified from Patel, 1999). 

ICso (nM) 
SSTR1 SSTR2 SSTR3 SSTR4 SSTR5 

Endogenous SRIF-
like peptides 
SRIF-14 0.1-2.26 0.2-1.3 0.3-1.6 0.3-1.8 0.2-0.9 
SRIF-14 0.1-2.2 0.2-4.1 0.3-6.1 0.3-7.9 0.05-0.4 
hCST-17 7 0.6 0.6 0.5 0.4 
rCST-29 2.8 7.1 0.2 3 13.7 

Synthetic peptides 
Octreotide 290-1140 0.4-2.1 4.4-34.5 >1000 5.6-32 
Lanreotide 500-2330 0.5-1.8 43-107 66-2100 0.6-14 
Vapreotide >1000 5.4 31 45 0.7 
Seglitide >1000 0.1-1.5 27-36 127->1000 2-23 
BIM23268 18.4 15.1 61.6 16.3 0.37 
NC8-12 >1000 0.024 0.09 >1000 >1000 
BIM23197 >1000 0.19 26.8 >1000 9.8 
CH275 3.2-4.3 >1000 >1000 4.3-874 >1000 

Nonpeptides agonists 
L-797, 591 1.4 1875 2240 170 3600 
L-779, 976 2760 0.05 729 310 4260 
L-796, 778 1255 >10000 24 8650 1200 
L-803, 087 199 4720 1280 0.7 3880 
L-817, 818 3.3 52 64 82 0.4 

The binding affinity of SMS, BIM23014, RC160, and MK678 for SSTR2 and SSTR5 is 

comparable to that of SRIF-14, indicating that they are neither selective for these subtypes 

nor more potent than the endogenous ligands (Patel and Srikant, 1994). The analog Des-

AA12 5 [D-Trp8 IAMP9 ] SRIF (CH275) binds both SSTR1 and SSTR4 (Liapakis et al., 1996; 

Patel, 1997). Other than SRIF and some of its derivatives, there are no compounds capable 

of binding all five subtypes. SRIF peptide antagonists were first described by Bass et al., 

1996. One such compound [AC-4-NOz-Phe-c (d-Cys-Tyr-D-Trp-Lys-Thr-Cys)-D-Tyr-NHj 

binds to hSSTR2 and hSSTRS with nanomolar affinity. A second peptide, BIM23056, blocks 

hSSTRS signaling and appears to be an antagonist for this subtype (Wilkinson et al., 1997). 

In addition, PRL-2903 (H-Fpa-cyclo(DCys-Pal-DTrp-Lys-Tle-Cys)-Nal-NH2) has been 

described as a specific antagonist for the SSTR2 (Hocart et al., 1999; Kawacubo et al., 

1999). 
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Several SRIF analogs have been reported to be selective for one SSTR subtype, 

e.g., BIM23056 (SSTR3), BIM23052, and L362-855 (SSTR5) (Reisine and Bell, 1995). Due 

to methodological variations in the binding analyses, however, such claims of subtype 

selectivity of these and other analogs have not been confirmed by others and remain 

controversial (Bruns et al., 1996; Patel and Srikant, 1994). In 1998, the Merck Research 

Group identified a series of nonpeptide agonists (Table 1) for each of the five hSSTRs in 

combinatorial libraries constructed on the basis of molecular modeling of known peptide 

agonists (Rohrer et al., 1998). Three of the compounds identified from this screen, L-

797591, L-779976, and L-803087, display low nanomolar affinity for hSSTRI (1.4 nM), 

hSSTR2 (0.05 nM), and hSSTR4 (0.7 nM). L-796778 binds to hSSTRS with K< 24 nM 

representing 50-fold selectivity and L-817818 displays selectivity for hSSTRS and hSSTRI 

(KjO.4 and 3.3 nM, respectively). The availability of these high-affinity subtype-selective 

agonists for several of the SSTRs represents a major break-through in the field, which 

should facilitate the direct probing of subtype-selective physiological functions as well as the 

development of orally active subtype-selective therapeutic compounds. 

The insulin receptor 

Insulin regulates a number of metabolic processes through binding to receptors in 

the cell surface of tissues throughout the body. The insulin receptor is a transmembrane 

glycoprotein complex with a molecular weight of approximately 400 kDa, and consists of two 

135-kDa a-subunits and two 95-kDa (3-subunits (Fig. 3). Both subunits are derived from a 

single-chain proreceptor encoded by a single gene located on the short arm of chromosome 

19 (Collier and Gorden, 1991; Olson et al., 1988) and are linked by disulfide bonds. The a-

subunits are located entirely in the extracellular region and the p-subunits posses an 

extracellular, transmembrane and intracellular domain. A complex of O- and N-linked 

carbohydrate side chains and covalently bound fatty acyl residues are attached to the insulin 

receptor (Mirmira and Tager, 1991 ). Functionally, the insulin receptor acts as a membrane 

bound allosteric enzyme and its two subunits perform distinct functions required for 

transmission of the insulin signal to the interior of the cell. Binding of insulin to the a-subunit 
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Figure 3. Structure of the insulin receptor (Modified from Maratos-Flier et al., 1997). 

activates the receptor, leading to stimulation of the kinase activity of the p-subunit. Once 

activated, the p-subunit autophosphorylates on at least six tyrosine residues, as well as 

phosphoryiating intracellular substrate proteins (Drake et al., 1996; Tsuruzoe et al., 2001). 

The best-known substrate for the insulin receptor is the insulin receptor substrate-1 (IRS-1 ), 

a cytoplasmic protein with molecular weight of 131 kDa, which undergoes rapid tyrosine 

phosphorylation following insulin stimulation. This allows non-covalent binding between the 

phosphorylated sites and specific src homology 2 domains (SH2) on target proteins such as 

PI3-kinase, growth factor receptor-bound protein 2 (GRB-2) and src homology 2 domain-

containing protein-tyrosine phosphatase (SHPTP-2) (Backer et al., 1992; Skolnik et al., 

1993). In the case of PI3-K and SHPTP-2, binding of IRS-1 to their SH2 domain results in 

rapid stimulation of enzymatic activity. GRB-2 does not have intrinsic enzymatic activity, but 

links IRS-1 with other signaling pathways such as the Ras (p21ras), an important protein 
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involved in regulation of growth and metabolism, and cycles between an active GTP-bound 

form and an inactive GDP-bound form. Insulin shifts the equilibrium from the GDP-bound to 

the GTP-bound form, and is mediated by the guanine nucleotide exchange factor, SOS and 

GRB-2. Activation of p21ras leads to direct activation of Raf-1 kinase and subsequent 

phosphorylation of MAPK kinase, which in turn phosphorylates MAPK. Activation of 

enzymes crucial to carbohydrate metabolism such as glycogen synthetase, phosphorylase 

kinase and glycogen phosphorylase by glycogen-associated protein phosphatases 1 (PPG-

1 ) occur after activation of pp90 S6 kinase (Korn at al., 1987). The signaling mechanisms 

through the insulin receptor are still largely unknown. 

Effects of insulin on metabolism 

Blood glucose levels are normally maintained between tight limits by the balance 

between glucose entry into the blood stream and glucose uptake by peripheral tissues. 

Insulin lowers blood glucose levels by suppressing hepatic glucose production (inhibits 

glycogenosis and restrain gluconeogenesis) and stimulating peripheral glucose uptake, 

mainly in skeletal muscle and adipose tissue. Glucose uptake is dramatically increased 

when blood glucose levels rises. This effect is mediated by GLUT-4, which is expressed in 

insulin-sensitive tissues (Shepherd and Kahn, 1999). Unlike other transporters, GLUT-4 is 

present in vesicles in the cytoplasm and upon insulin stimulation, promotes translocation of 

these vesicles to the cell membrane, where they function as pores through which glucose is 

taken up (Watson and Pessin, 2001). Insulin enhances the activity of individual GLUT-4 and 

is important in maintaining normal levels of the GLUT-4 in muscle and adipose tissue 

(Bourey et al., 1990; Holman et al., 1990). In addition, insulin helps maintain the glucose 

gradient across cell membranes by stimulating enzymes involved in glycogen synthesis and 

glucose oxidation. Insulin enhances its own action in stimulating glucose uptake into 

muscle, by suppressing lipolysis and reducing the levels of non-esterified fatty acids that 

may interfere with glucose uptake and metabolism through the glucose-fatty acid cycle. 

Lipogenesis is stimulated by insulin, where adipocytes and hepatocytes synthesize 

triglycerides from non-esterified fatty acids and glycerol-3-phosphate. The activity of 

lipoprotein lipase, which synthesizes fatty acids from circulating lipoproteins is also 

increased by insulin. Pyruvate dehydrogenase, an enzyme present in the mitochondria is 

phosphorylated by insulin to oxidize pyruvate into adipose tissue (Reed and Lane, 1980). 
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Insulin stimulates the active transport of amino adds into muscle cells, thereby enhancing 

protein synthesis. Glycolysis and oxidative phosphorylation of glucose derivatives provide 

the energy required for such metabolic activity (Duckworth, 1988). There is some evidence 

that insulin may act as a vasodilator, increasing skeletal muscle blood flow and therefore 

glucose delivery (Baron et al., 1994). 

Heterotrimeric G-proteins 

The G-protein cycle 

G-proteins are made up of three polypeptides: a a subunit that binds and hydrolyzes 

GTP, a p subunit, and a y subunit. The (3 and y subunits form a dimer that dissociates when 

its denatured and therefore is a functional monomer. When GDP is bound, the a subunit 

associates with the Py subunit to form an inactive heterotrimer that binds to the receptor. 

Monomeric, GDP-bound a subunits can interact with receptors, but this association is 

greatly enhanced by the Py subunit. Upon receptor stimulation, it becomes activated and 

changes its conformation. The GDP-bound a subunit responds with a conformational 

change that decreases the affinity for GDP, so that GDP is released from the active site. 

Because the concentration of GTP in cells is much higher than those for GDP, the GDP is 

replaced with GTP as it leaves the receptor complex (Fig. 4). Once GTP is bound, the a 

subunit assumes its active conformation and dissociates from the receptor and the Py 

subunit (Oilman, 1987). The activated state lasts until the GTP is hydrolyzed to GDP by the 

intrinsic GTPase activity of the a subunit. All isoforms of the a subunits are GTPases, 

although the intrinsic rate of GTP hydrolysis varies from one type of a subunit to another 

(Carty et al., 1990). After GTP is cleaved to GDP, a and Py subunits reassociate, become 

inactive, and return to the receptor. The free a and Py subunits each activate target 

effectors. The rate of GTP hydrolysis is a timing mechanism that controls the duration of 

both a and Py subunit activation. Reassociation turns off both subunits and primes the 

system to respond again. Although the Py subunit does not bind GTP, its active lifetime 

depends on the rate of GTP hydrolysis by the a subunit. 

G-proteins are classified based on the identity of Ga subunits into four major 

subfamilies; Gs, Gi/Go, Gq, and G12. Chorela toxin from Vibrio cholerae catalyzes the 
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Figure 4. The G-protein cycle (Modified from Hepler and Oilman, 1992). 

ADP-ribosylation of a conserved arginine residue (Arg202) on a subunits in the Gs family, 

which results in inhibition of GTPase activity and interaction with the (3y subunit (Servent! et 

al., 1992). PTX from Bordetella pertussis catalyze the ADP-ribosylation of a cysteine 

residue at position -4 from the C-terminus of Ga subunits in the Gi/Go family, resulting in 

inhibition of receptor-G-protein coupling. Gq and G12 lack the cysteine residue that can 

undergo ADP-ribosylation by PTX, thus is referred as PTX-insensitive G-proteins 

(Strathmann and Simon, 1990). It has been well established that signaling through Gq is 

mediated mainly through the PLC pathway (Taylor et al., 1991). 

Structure and function of a and py subunits 

Mammals have over 20 different G-protein a subunits (16 gene products, some with 

alternatively spliced isoforms). They are divided into four major classes according to the 

similarity of their amino acid sequences that range from 56 %-95 % identity. With the 
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exception of G-proteins that are found in sensory organs (such as a,, OgUst or a^) and a few 

that are predominantly expressed in hematopoietic cells (a16) or in neurons and (3-cells (do), 

most a subunits are widely expressed (Hsu et al., 1990; Kaziro et al., 1991; Marinissen and 

Gutkind, 2001 ). Individual cells contain at least four or five types of a subunits, which 

consist of two domains: a GTPase domain that contains the guanine-nucleotide binding 

pocket as well as sites for binding receptors, effectors, the py subunit, and a helical domain 

whose function is not clear, Fig. 5 (Coleman et al., 1994; Lambright et al., 1994). Arg178of 

the at subunit may represent a key element in the GTP hydrolysis, where it would help set 

the GTPase activity (Conklin and Bourne, 1993). The helical domain may also contribute to 

the effector binding site, along with other regions on the GTPase domain (Coleman et al., 

1994). The first 25 amino acids of the a subunit are essentia! for the Py subunit binding 

(Denker et al., 1992). The Py subunit-binding surface may include the a2 helix, because a 

cysteine on this helix (Cys215 in a0) can be chemically cross-linked to the py subunit (Thomas 

et al., 1993). The effector binding site of the as includes the a2 helix, which partially overlaps 

the putative Py subunit-binding surface. The C-terminus and parts of the a5 helix are 

important sites for interaction with receptors, since an activated receptor triggers the 

intracellular responses by dramatically decreasing the affinity of the a subunit for GDP. This 

effect can be replicated by deletion of 14 amino acids from the C-terminus of cto (Denker et 

al., 1992). 

The Py subunit is functionally a monomer, where the p subunit is made up of two 

structurally distinct regions, an amino terminal segment, which is a a helix of approximately 

20 amino acids, and a sequence motif that is repeated seven times (Clapham and Neer, 

1997). This repeating sequence, called a WD-repeat, is not unique to the p subunit but 

occurs in approximately 40 other proteins that make up the WD-repeat superfamily (Li et al., 

2000). Members of this family are involved in many cellular pathways such as signal 

transduction, pre-mRNA splicing, transcriptional regulation, assembly of the cytoskeleton, 

and vesicular traffic. 

For many years, the main hypothesis for G-protein mediated signaling was that the 

GTP-bound a subunit activated the effectors, while the Py subunit was only a negative 

regulator. Release of free Py subunits from the receptor complex was thought to deactivate 

other a subunits by forming inactive heterotrimers. Indeed, the Py subunit can block 

activation of adenylyl cyclase through this mechanism (Gilman, 1987), but this concept was 
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Figure 5. A schematic diagram of Gia1, with switch segments darkened and secondary 

structure elements labeled. The GTP- and GDP-bound states are represented by a ball and 

stick model (Modified from Sprang, 1997). 

drastically changed after it was discovered that the Py subunit could activate the muscarinic 

K* channel and that both, a and Py subunits, could positively regulate effectors (Logothetis 

et al., 1987). Subsequently, the Py subunit was shown to activate a large number of 

effectors, such as adenylyl cyclase, PLC-p, PLA2, PI3-kinase and p-adrenergic receptor 

kinase (Clapham and Neer, 1997). It has been suggested that the Py subunit acts through 

Ras to activate the MAPK pathway, promoting tyrosine phosphorylation of Src homology 2-
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containing protein (SHC), and increasing the functional association among SHC, GRB-2 and 

SOS (Luttrell et al., 1996). 

Receptor G-protein effector interfaces 

Cellular responses to external stimuli are sometimes very selective. One example is 

the heart, which responds accurately to opposing signals. Stimulation of its p-adrenergic 

receptor increases the rate and force of contraction, while stimulation of muscarinic 

cholinergic receptors decreases the rate and force of contraction. Each of these receptors 

is coupled to a different G-protein: the p-adrenergic signals through Gs, while the muscarinic 

receptors through Gi/Go or Gq. Although cellular responses to hormones are highly 

specific, they are not always universal. There are several examples of receptors that can 

interact with more than one G-protein to initiate different signaling pathways (Abou-Samra et 

al., 1992; Allgeier et al., 1994; Chabre et al., 1994). The parathyroid hormone receptor 

transfected in COS-7 cells is coupled to two different G-proteins to activate adenylyl cyclase 

and PLC, while the p-adrenergic receptor transfected into the same cell type only activates 

adenylyl cyclase (Abou-Samra et al., 1992). Effectors discriminate better among G-protein 

a subunits than do receptors: only a, activates adenylyl cyclase and only Oq/an activate 

PLC-p. In contrast, Py subunits can also activate effectors equally. Furthermore, the 

cytoplasmic region of G-protein-coupied receptors is responsible for G-protein selectivity. 

Specificity depends not only on the presence of a correct G-protein recognition sequence, 

but also on its proper control by other cytoplasmic regions. The selectivity of a receptor can 

be greatly diminshed by altering cytoplasmic regions outside the recognition sequence 

(Wong and Ross, 1994). 

Phosphorylation of receptor and G-protein 

Exposure of G-protein coupled receptors (GPCRs) to agonists often results in a rapid 

attenuation of receptor responsiveness. This process, termed desensitization, is the 

consequence of a combination of different mechanisms. These mechanisms include 

uncoupling of receptors from heterotrimeric G-proteins in response to receptor 

phosphorylation (Lohse et al., 1990), internalization (Anborgh et al., 2000), and down-

regulation due to reduced receptor mRNA and protein synthesis, as well as both lysosomal 

and plasma membrane degradation of pre-existing receptors (Jockers et al., 1999; Pak et 

al., 1999). The time frame over which these processes occur ranges from seconds 
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(phosphorylation) to minutes (endocytosis) and hours (down-regulation). The extent of 

receptor desensitization varies from complete termination of signaling, as observed in visual 

and olfactory systems, to attenuation of agonist potency and maximal responsiveness, such 

as observed in the (32 adrenergic receptor (Sakmar, 1998; Zhang et al., 1997). The extent of 

receptor desensitization is regulated by a number of factors that include receptor structure 

and cellular environment (Barlic et al., 1999; Menard et al., 1997). Traditionally, GPCR 

desensitization has been characterized by events that contribute to the uncoupling of 

receptors from their heterotrimeric G-proteins. GPCR signaling can also be terminated at 

the level of G-proteins. For example, a family of proteins, termed regulators of G-protein 

signaling (RGS) act to increase the rate of GTP hydrolysis bound to both a subunits of 

Gi/Go and Gq, thereby dampening signaling via Gi/Go - and Gq -regulated pathways 

(Dohlman and Thomer, 1997). The evidence that RGS12 interacts with the carboxyl-

terminal PDZ domain binding motif of the interieukin-8 receptor B (CXCR2) suggests that 

regulation of G-protein signaling by RGS proteins may involve direct interactions with the 

receptor (Snow et al., 1998). In addition, GPCRs can serve as substrates for PKA, PKC, 

and G-protein-coupled receptor kinase phosphorylation during desensitization (Budd et al., 

2000; Chen et al., 1997; Francesconi and Duvoisin, 2000; Pitcher et al., 1998). 

The a subunits can be phosphorylated on serine or threonine residues (Neer, 1997; 

Rothenberg and Kahn, 1988; Umemori et al., 1997). In most cases, phosphorylation does 

not change the activity of the protein, but rather changes its localization or association with 

other proteins (Koch et al., 1991). The first evidence for (3 subunit phosphorylation was 

shown in human leukemia HL-60 cells (Wieland et al., 1993). Similarly, the p subunit of the 

retinal G-protein transducin can be phosphorylated by the GTP analog GTPyS (Wieland et 

al., 1992). It was suggested that the phosphate group of GTP or the thiophosphate of 

GTPyS could be transferred from histidine to GDP at a subunits, leading to an alternative 

pathway for a subunit activation. Phosphorylation can also affect the Py subunit function 

indirectly. Phosphorylation of Gaz or Ga12 by PKC at a site near the N-terminus inhibits its 

ability to interact with Py subunits (Kozasa and Gilman, 1996). In addition, the Py subunit 

can also undergo direct phosphorylation. The p subunit of yeast (Ste4) is rapidly 

phosphorylated in response to pheromone (Maeda et al., 1994). The phosphorylation 

occurs on a sequence that is inserted between the fifth and sixth repeats of Ste4. No 

homologous sequence is found in other eukaryotic p subunits. Removal of this sequence 
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does not prevent the (By subunit from transmitting the mating pheromone signal, but does 

make yeast expressing the mutant protein more sensitive to pheromone (Cole and Reed, 

1991). 

Signal transduction by AVP and SRIF 

Ca2* signaling 

Ionized Ca2* is the most common signal transduction element in cells ranging from 

bacteria to specialized neurons. Unlike other second messengers, Ca2* is required for life, 

although exposure to elevated [Ca2*]j for long periods leads to cell death. Ca2* cannot be 

metabolized like other second messengers, thus cells regulate very tightly intracellular levels 

through binding and specialized extrusion proteins. Normal [Ca2*} are approximately 100 

nM, which is approximately 10000-fold lower than the 1 mM present in the extracellular 

space. Several proteins bind Ca2* tightly, in some cases simply to buffer or lower free Ca2* 

levels, and other to trigger second messenger pathways. 

The role of Ca2* in insulin exocytosis has been demonstrated by several 

investigators (Henquin et al., 1998; Qian and Kennedy, 2001 ; Wollheim and Pozzan, 1984). 

Basal [Ca2*]i is maintained by a variety of cellular processes and the major barrier is the 

plasma membrane that is highly impermeable to Ca2*, and exhibits two energy-dependent 

processes of Ca2* extrusion. These are the Ca2*-Mg2* ATPase and the Na*-Ca2* exchange 

mechanism, which depends on the Na* gradient established by the Na*-K* ATPase. Within 

the cytoplasm, the ER and mitochondria are the major organelles that contribute to the 

maintenance of low [Ca2*];. Ca2* is pumped into the ER by the action of membrane-bound 

Ca2*-Mg2* ATPase, and into the mitochondria by the mitochondrial proton gradient. 

Receptor-activated Ca2* mobilization through the IP3 cascade can involve two 

phases: 1 ) Ca2* release from the ER, and 2) a more prolonged phase due to extracellular 

Ca2* influx (Putney, 1987). In this manner, [Ca2*]j can increase either through the release 

from the ER or influx via the plasma membrane. One of the mechanisms of Ca2* influx is 

through Ca2* release-activated Ca2* influx or so called capacitative Ca2* entry (Bimbaumer 

et al., 2000; Schofl et al., 1996). The basis for this mechanism is that an increase in [Ca2*} 

by IP3, evokes Ca2* influx through the opening of Ca2* channels on the plasma membrane 

(Icrac). Experiments utilizing TO, which inhibits microsomal (but not plasma membrane) 

Ca2*-ATPase, thereby depleting intracellular Ca2* stores has been utilized to demonstrate 

this mechanism (Thastrup, 1990). Subsequent addition of Gq agonists in the presence of 
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TG does not further increase the rate of Ca2* influx (Takemura et al., 1989), suggesting that 

depletion of the agonist-sensitive intracellular Ca2* stores regulate Ca2* influx at the plasma 

membrane. 

Extracellular Ca2* influx can also be mediated by either the voltage-dependent Ca2* 

channels (VDCC) or receptor-operated Ca2* channel (ROC). There are three major 

subtypes of VDCCs: L-type (long-lasting), T-type (transient) and N-type (neither long-lasting 

nor transient). Activation of VDCCs is controlled by changes in plasma membrane potential, 

which initiates a number of cellular responses, including muscle contraction and exocytosis 

in endocrine and nerve cells. The L-type VDCC is characterized by its sensitivity to 

dihydropyridines (DHP). It is inhibited by the DHP antagonist nimodipine and is activated by 

the DHP agonist Bay K 8644 (Smith et al., 1993). The T-type VDCC is activated by a 

membrane potential of ~ - 50 mV, and is important for the pacemaker activity in several 

tissues. There are no specific blockers for the T-type VDCC, however, Ni2*, tetrandine and 

felodine can partially block this type of channel. Adenosine, a potent modulator of 

neurotransmitter release inhibits N-type VDCC (Yawo and Chuhma, 1993) and is mediated 

by Gi/Go (Mirotznik et al., 2000). Activation of the ̂ -opioid receptor also inhibits Ca2* influx 

by selectively inhibiting N-type VDCC (Endo and Yawo, 2000). Agonists that bind plasma 

membrane receptors activate the ROCs. Their structure and mechanisms are still under 

investigation. The ROCs provide a number of pathways of Ca2* influx into the cytoplasm 

and the ER. Store-operated Ca2* channels are a major subfamily of ROCs, and are 

activated by decreased ER Ca2*. In order to initiate or maintain specific type of Ca2* signal, 

ROCs, which are non-selective cation channels, can deliver Ca2* directly to specific regions 

of the cytoplasm. ROCs allow Na* influx, leading to membrane depolarization and opening 

of VDCCs and Ca2* influx. Store-operated Ca2* channels deliver Ca2* specifically to the ER, 

thus maintaining oscillating Ca2* signals (Barritt, 1999). 

The Gq pathway 

The mechanisms by which AVP signals have been investigated in various 

tissues/cells, such as smooth muscle, endothelium and endocrine cells (Spatz et al., 1994). 

Insulin release from rat pancreas and clonal p-cell lines RINmSF (Lee et al., 1995) and HIT-

T15 (Richardson et al., 1990) are mediated by V1b receptors. AVP binds to Gq-coupled V, 

receptors, leading to PLC-p activation (Thibonnier et al., 1993). Activation of PLC-p 

promotes PIP2 hydrolysis, resulting in the generation of IP3 and DAG. IP3 stimulates the 
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release of Ca2* from the ER into the cytoplasm via the IP3 receptor/Ca2* channel (Berridge, 

1993). The IP3 receptor structure consists of IP3 binding, coupling and Ca2* channel 

domains. Upon IP3 binding, a conformational change of the coupling domain occurs, 

leading to Ca2* channel opening (Mignery and Sudhof, 1990). Ca2* binds and activates a 

number of intracellular proteins, including calmodulin, which contribute to many cellular 

responses, including insulin and glucagon release. DAG, the other product generated from 

PIP2 hydrolysis, is known to activate PKC, leading to phosphorylation of key proteins 

involved in cellular responses. In addition, V, receptors can be coupled to other effectors, 

such as PLD and PLA2 (Jackson, 1996). 

AVP stimulates insulin release through PLC-dependent and -independent pathways 

(Chen et al., 1994; Li et al., 1992; Richardson et al., 1990). Phosphoinositides consist of a 

glycerol backbone containing 2 fatty acyl groups (at 1- and 2-positions) and a phosphate 

group coupled to the suger myoinositol at the 3-position. Phosphorylation of PI to PIP and 

then to PIP2 occurs predominantly in the plasma membrane. The PLCs are a family of 

isozymes that hydrolyze PIP2 at the 3-position of the phosphodiester bond of the glycerol 

backbone. Phosphoinositide-specific PLC (PPI-PLC) is a subfamily of PLC that specifically 

hydrolyzes inositol-containing lipids, but not other phospholipids, such as 

phosphatidylcholine. PPI-PLC can be classified into three classes; PPI-PLC-p, -y, and -Ô, 

which are distinct proteins that contain only a small amount of sequence identity (Rhee and 

Choi, 1992). PLC-p has been further classified into two subtypes: pi and pil, and exhibit a 

high degree of sequence identity. Both PLC-p and PLC-y isozymes are involved in receptor-

activated PIP2 hydrolysis, however, their mechanisms of activation are different due to a 

difference in the primary amino acid sequence. PLC-y contains SH2 and SH3 domains, and 

mediates the binding to other proteins that contain phosphorylated tyrosine residues such as 

growth factor and insulin receptors. Activation of PLC-p is mediated by Gq (Taylor et al., 

1991), whereas PLC-y by receptors that possess intrinsic tyrosine kinase activity (Ullrich and 

Schlessinger, 1990). Activation of PLC-Ô can be mediated by Icrac and PIP2 (Kim et al., 

1999; Lomasney et al., 1996). 

The Gi/Go pathway 

SRIF receptors (SSTRs) are coupled to Gi/Go proteins and mediate their cellular 

responses through multiple second messenger systems including adenylyl cyclase, Ca2* 

and K* ion channels, Na7H* antiporter, guanylate cyclase, PLC, PLA2, MAPK, and serine, 
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threonine, and phosphotyrosyl protein phosphatase (Patel et al., 1995; Reisine and Bell, 

1995). SSTR1 is coupled to adenylyl cyclase via Gai3 (Kubota et al., 1994). SSTR2A 

purified from GH4C1 cells or expressed in CHO cells is capable of associating with Gail, 

Gai2,Gai3, and Gao2 (Gu and Schonbrunn, 1997). SSTR3 can interact with Gail, Gai2, 

Gai4, and Gai6 (Komatsuzaki et al., 1997). The specific G-proteins that associate with 

other SSTR subtypes have not been determined. Initial studies regarding coupling of Gi/Go 

to adenylyl cyclase were contradictory, although there is now a general agreement that all 

five SSTR subtypes inhibits the adenylyl cyclase-cAMP pathway. Three of the SSTR 

subtypes have been shown to inhibit the MAPK signaling cascade: SSTR2 in neuroblastoma 

cells, SSTR3 in NIH3T3 cells and mouse insulinoma cells, and SSTR5 in transfected CHO-

K1 cells (Cattaneo et al., 1994; Cordelier et al., 1997; Yoshitomi et al., 1997). In contrast, 

SSTR1 and SSTR4 stimulate MAPK in transfected CHO-K1 cells (Bito et al., 1994; Florio et 

al., 1999). SSTRs 2-5 activate G-protein-gated inward rectifying K* channels in Xenopus 

oocytes, with coupling by SSTR2 being the most efficient (Kreienkamp et al., 1997). In rat 

insulinoma 1046-38 cells, endogenously expressed SSTR1 and SSTR2 inhibits voltage-

dependent Ca2* channels, with the effect of SSTR1 being more pronounced than SSTR2 

(Roosterman et al., 1998). SSTR1 also stimulates a Na*/H* exchanger via a PTX-

insensitive mechanism (Hou et al., 1994). Studies in cultured mouse hypothalamic neurons 

have shown that SSTR2 decreases and SSTR1 increases AMPA/kainate receptor-mediated 

glutamate currents (Lanneau et al., 1998). SSTR4 activates PLA -̂dependent arachidonate 

production via Gi/Go in transfected CHO-K1 cells (Bito et al., 1994). In addition, a number 

of reports suggest regulation of the PLC-IP3 pathway by Gi/Go in both normal and 

transfected cells (Akbar et al., 1994; Wilkinson et al., 1997). Activation of the SSTR2A and 

SSTRS stimulates PLC-dependent IP3 production in transfected COS-7 and F4C1 pituitary 

cells (Akbar et al., 1994; Chen et al., 1997). Gi/Go proteins coupled to SSTRS can inhibit 

IP3-mediated Ca2* mobilization in transfected CHO-K1 cells (Bito et al., 1994). The 

mechanism underlying the selectivity of SSTRs for K* and Ca2* channel coupling and the 

molecular signals in the receptors responsible for activation of various phosphatases and 

the MAPK pathway remain to be determined. 

Cross-talk between Gq and Gi/Go 

Signaling via GPCRs can lead to many cellular responses, ranging from regulation of 

intracellular levels of cAMP to stimulation of gene transcription. Members of this receptor 
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family are grouped into different categories depending on the particular G-protein that they 

predominantly interact with. Thus receptors that couple to Gs stimulate adenylyl cyclase in 

many cells, while Gq-coupled receptors mobilize intracellular Ca2* via activation of PLC. 

There is compelling evidence that activation of one particular signaling pathway by a GPCR 

can amplify intracellular signaling within a parallel but separate pathway. 

AVP binds the V1b receptor in p-cells (Lee et al., 1995), which is coupled to Gq, thus 

activating PLC-p through the aq subunit with subsequent hydrolysis of PIP2 to IP3 and DAG 

(Thibonnier, 1992). DAG activates PKC, while IP3 promotes Ca2* release from the ER, 

leading to an increase in [Ca2*]j (Li et al., 1992; Thorn and Petersen, 1991). Activation of 

Gi/Go-coupled receptors can enhance the inositol phosphate signals generated by Gq-

coupled receptors, although in some cases activation of Gi/Go alone does not alter IP3 

formation (Muller and Lohse, 1995; Neer, 1997). Evidence of cross-talk between Gq and 

Gi/Go has been reported. In human neuroblastoma SH-SY5Y cells, SRI F increases [Ca2*]; 

after pretreatment with carbachol, which signals via Gq. SRIF alone fails to increase [Ca2*} 

in SH-SY5Y cells (Connor et al., 1997). In intestinal smooth muscle, SRIF increases IP3 

formation and Ca2* release, leading to muscle contraction through the Py dimer (Murthy et 

al., 1996). Stimulation of PLC-p by the Py dimer of Gi/Go can occur (Offermanns and 

Simon, 1995). Studies in COS-1 cells have provided support for the Py dimer mediation of 

cross-talk between Gq- and Gi/Go-coupled receptors (Quitterer and Lohse, 1999). 

Enhancement of Gq-dependent signals by Gi/Go-coupled receptors in COS-7 cells requires 

an activated PLC-p and is mediated by the Py dimer (Chan et al., 2000). Biochemical 

assays suggest that the Py dimer can interact with a subunit from different G-proteins (Muller 

et al., 1996; Ueda et al., 1994). Although cross-talk between Gq and Gi/Go have been 

reported, where preactivation of PLC-P by Gq leads to an increase in IP3 formation and 

[Ca2*]i by the Py dimer from Gi/Go, the precise mechanisms are not fully understood. 

Regulation of PIP2 synthesis 

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a glycerol-phospholipid found 

predominantly in the inner leaflet of eukaryotic plasma membranes. Although it constitutes 

less than 0.05 % of total cellular phospholipids, PIP2 plays a critical role in intracellular 

signaling. PIP2 is best known for its ability to serve as a precursor for the second 

messengers IP3 and DAG, which are generated from the hydrolysis by PLCs following 
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agonist stimulation. PIP2 can be synthesized by two different routes: by phosphorylation of 

PI4P on the D-5 position of the inositol ring by PIPSKs or by phosphorylation of PI5P on the 

D-4 position by PIP4Ks. Although the majority of PIP2 in cells is produced from PI4P 

(Hawkins et al., 1992; Stephens et al., 1991), it is likely that some PIP2 present in cell 

membranes are synthesized from PI5P. The PIP2 produced by two different pathways can 

be hydrolyzed by PLC-p to generate IP3 and DAG, phosphorylated by PI3-kinase to PIP3, or 

dephosphorylated by 5-phosphatase to PIP. 

PI4P is synthesized by PI4Ks, through phosphorylation of PI on the 0-4 position of 

the inositol ring. PI4Ks are ubiquitously expressed enzymes that associate with cellular 

membranes such as the ER, Golgi, plasma membrane, nuclear envelope, lysosomes, and a 

variety of intracellular vesicles (Pike, 1992). Characteristic features of PI4Ks include a C-

terminal catalytic domain homologous to those of PI3-Ks. In addition, there is a 

phosphoinositide kinase (PIK) domain of unknown function, common to both PI4Ks and 

PI3Ks (Gehrmann and Heilmeyer, 1998). PI4Ks were originally characterized as a member 

of a large family of PI kinases, subdivided into three main categories: type I, type II, and type 

III, based on the biochemical properties of partially purified proteins. The type I kinases 

were defined as enzymes whose lipid kinase activity is relatively resistant to adenosine and 

is inhibited by non-ionic detergent (Whitman et al., 1987). Subsequent studies revealed that 

the type I PI kinases are PI3Ks, based on their ability to phosphorylate the 0-3 position of PI 

(Whitman et al., 1988). In contrast, the type II and type III PI kinases are PI4Ks that require 

non-ionic detergent for maximal enzyme activity (Whitman et al., 1987). Type II kinases 

differ from type III in their size and sensitivity to inhibition by adenosine (Endemann et al., 

1987). The second step in the conversion of PI to PIP2 via PI4P requires the action of 

PIPSKs. PIP5K activity can be detected in several subcellular compartments, including the 

plasma membrane, cytoplasm, ER, cytoskeleton, and nucleus (Loijens et al., 1996). PIPSKs 

are subdivided into two distinct classes (type I and II), based on their biochemical and 

immunological properties (Jenkins et al., 1994; Loijens et al., 1996). Several genes 

encoding the type I and type II PIPSKs have been cloned and although similar to each other, 

these enzymes share little homology with other lipid or protein kinases (Boronenkov and 

Anderson, 1995; Castellino et al., 1997; Ishihara et al., 1996). 

An alternative pathway for PIP2 synthesis is the production from PI5P through the 

action of PIP4Ks. The mechanism for PI5P synthesis remains unclear and little is known 

about this lipid. PI5P can be synthesized by PIPSKa and p, which phosphorylates PI on the 
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0-5 position (Tolias et al., 1998), however, their preferred substrate is PI4P. The human 

homologue of Fab1 (p235) can also catalyze the conversion of PI to PI5P in vitro (Shisheva 

et al., 1999). It is possible that this enzyme is responsible for synthesizing PI5P in vivo. The 

second step in the conversion of PI to PIP2 via PI5P requires the action of PIP4Ks, which 

are enzymes that phosphorylates the D-4 position of PI5P. PIP4Ks were originally identified 

as PI4P 5-kinases based on their ability to phosphorylate commercial PI4P (Bazenet et al., 

1990). The first cloned PIP4K was characterized as a 47 kDa, type II PI4P 5-kinase and 

named type lia PIP5K (Divecha et al., 1995). Following the discovery that this enzyme is 

actually a PI5P 4-kinase, it has been renamed PIP4Ka. Two genes highly related to 

PIP4Ka, PIP4KP (78 % identical) and PIP4Ky (61 % identical) have also been cloned 

(Castellino et al., 1997; Itoh et al., 1998). The PIP4Ks are 35 % identical to the PIPSKs in 

their kinase domains, but differ outside this region. PIP4Ks are related to the yeast PIPSKs, 

Mss4 (43 %) and Fab1 (28 %) (Loijens and Anderson, 1996). The conserved catalytic 

domains of the PIP4Ks contain an insert region, which in the case of PIP4Ka and p, is 

comprised of proline-rich sequences that resembles SH3-domain binding sites (Loijens et 

al., 1996). 

Role off PIP2 In cellular responses 

PIP2 participates in a number of signaling pathways that regulate cellular function 

(Fig. 6). It is the precursor of three important second messengers: IP3, DAG, and PIP3. 

PIP2 can function as a second messenger by interacting with different proteins and 

regulating their activities and/or localization. PIP2 plays a direct role in actin cytoskeletal 

regulation, through binding and regulation of numerous actin-binding proteins in vitro, 

including gelsolin, profilin, and a-actinin (Fukami et al., 1992; Janmey and Stossel, 1987; 

Lassing and Lindberg, 1988; Takenawa and Miki, 2001). PIP2 synthesis is correlated with 

actin assembly, where manipulation of intracellular levels results in altered actin cytoskeletal 

organization. Overexpression of murine PIPSKs in COS cells dramatically increases 

aberrant actin polymerization (Shibasaki et al., 1997), whereas overexpression of PIP2 -

phosphatase synaptojanin decreases actin stress fibers (Sakisaka et al., 1997). 

Furthermore, yeasts lacking Mss4 display defects in their actin cytoskeleton during polarized 

cell growth (Nomma et al., 1998). PIP2 is thought to stimulate actin assembly by displacing 

gelsolin from barbed end of actin filaments, allowing the addition of actin monomers 

(Hartwig et al., 1995). 
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Figure 6. Roles of PIP2 in cellular function (Modified from Tolias and Carpenter, 2000). 

PIP2 appears to play a role in vesicle trafficking. In permeabilized PC12 cells, PIP5K 

and phosphatidylinositol transfer protein are required for restoring the priming step' of 

exocytosis, that proceeds Ca2*-activated membrane fusion (Hay et al., 1995). Inhibition of 

PIP2 synthesis blocks Ca2*-triggered secretion, suggesting that PIP2 is necessary for 

exocytosis. PIP2 is required for both early and late events in endocytic coated-vesicle 

formation (Jost et al., 1998). PIP2 regulates membrane trafficking events by modulating the 

function of proteins essential for vesicular transport, such as ADP ribosylation factor 1 

(ARF1 ), ARF guanine nucleotide exchange factor (ARNO), PLD, dynamin, and the clathrin 

adaptor complex AP-2 (Cukierman et al., 1995; Klein et al., 1998; Liscovitch et al., 1994; 

Randazzo, 1997). 

PIP2 may also function in different pathways by binding pleckstrin homology (PH) 

domain-containing proteins such as spectrin, pleckstrin, mSOS1, dynamin, and PLC-y, 

where PIP2 binding most likely serves to localize these proteins to the membrane and/or 

stimulate their activities. Binding of PIP2 to the PH domain of dynamin activates GTPase 

activity (Lin and Oilman, 1996). PIP2 promotes GDP-GTP exchange on the GTPase Cdc42 

(Zheng et al., 1996), regulate Na*-Ca2> exchange and the function of K* channels 

(Hilgemann and Ball, 1996; Huang et al., 1998). In addition, PIP2 inhibits microtubule 

assembly by binding to tubulin (Popova et al., 1997). Regulation of mRNA processing and 

chromatin structure in the nucleus by PIP2 has also been reported (Boronenkov et al., 1998; 

Zhao et al., 1998). 
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CHAPTER II SOMATOSTATIN-INDUCED PARADOXICAL INCREASE IN 

INTRACELLULAR Ca2* CONCENTRATION AND INSULIN SECRETION IN THE 

PRESENCE OF ARGININE VASOPRESSIN IN CLONAL p-CELL HIT-T15 

A paper accepted for publication in the Biochemical Journal 

Henrique Cheng, Sirintom Yibchok-anun, Seung-Chun Park and Walter H. Hsu 

ABSTRACT 

Somatostatin (SRIF), a hormone signals via Gi/Go, usually inhibits intracellular 

calcium concentration ([Ca2*}) and insulin release from p-cells. We have found that in the 

presence of arginine vasopressin (AVP), which signals via Gq, SRIF increased [Ca2*} 

leading to insulin release in HIT-T15 cells. The increase in [Ca2*} by SRIF was observed 

even after 60 min of AVP treatment. SRIF alone failed to increase [Ca2*} and insulin 

release. SRIF induced changes in [Ca2*} in a biphasic pattern, characterized by a sharp 

and transient increase followed by a rapid decline to sub-basal level. Pretreatment with 

pertussis toxin, which inactivates Gi/Go, abolished the effects of SRIF. U-73122, an inhibitor 

of phospholipase C, antagonized SRIF-induced increase in [Ca2*}. In Ca2*-free medium, 

SRIF still increased [Ca2*}. Depletion of intracellular Ca2* stores with thapsigargin, a 

microsomal Ca2* ATPase inhibitor, abolished SRIF's effect. In the presence of bradykinin, 

another Gq-coupled receptor agonist, SRIF also increased [Ca2*}, but not in the presence of 

isoproterenol (a Gs-coupled receptor agonist) or medetomidine (a Gi/Go-coupled receptor 

agonist). Our findings suggested that SRIF signals through Gi/Go, and involves 

phospholipase C and Ca2* release from the endoplasmic reticulum. The increase in [Ca2*} 

by SRIF leads to insulin release. This cross-talk is specific to Gq and Gi/Go, and is not 

limited to the AVP and SRIF receptors. 
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INTRODUCTION 

The hormone insulin is synthesized and released from pancreatic (3-cells, and is the 

most important regulator of elevated blood glucose concentrations. The mechanism that 

regulates insulin release is rather complex from the endocrine point of view. Although an 

increase in blood glucose concentrations is one of the most potent stimulators for insulin 

release, several hormones and neurotransmitters act directly or indirectly in the pancreas to 

stimulate or inhibit its release. Inhibition of insulin release by somatostatin (SRIF) has been 

well characterized in studies utilizing the whole pancreas, pancreatic islets and several p-cell 

lines [1-4]. Arginine vasopressin (AVP), a hormone normally found in the posterior pituitary 

gland, is also present in the pancreas [5]. We previously demonstrated AVP's ability to 

stimulate the release of glucagon and insulin from the rat pancreas, and in the a-cell line 

lnR1G9 and p-cell line RINmSF [6,7]. 

SRIF was initially isolated and identified as an inhibitor of growth hormone release 

from anterior pituitary cells [8]. In the pancreas, SRIF is synthesized and released from 5-

cells, and inhibits both endocrine and exocrine secretions [9,10]. The inhibitory effects of 

SRIF on insulin release have been associated with decreases in cAMP and intracellular 

calcium concentration ([Ca2*}) through inhibition of Ca2* influx via L-type voltage-dependent 

Ca2* channels [4] and opening ATP-sensitive K* channels [11]. High resolution 

measurements of cell capacitance has also suggested that inhibition of insulin release by 

SRIF is associated with activation of the Ca2*-dependent protein phosphatase calcineurin, 

and involves activation of G-proteins but not inhibition of voltage dependent Ca2* currents or 

adenylate cyclase activity [12]. SRIF receptors are coupled to the pertussis toxin (PTX) 

sensitive family of G-proteins (Gi/Go) [13]. Binding of SRIF to its receptors leads to 

conformational changes in G-proteins, where a and Py subunits assume their active form 

and dissociate from the receptor. Both PTX-sensitive and -insensitive G-proteins have the 

ability to transduce signals between receptors and phospholipase C (PLC) [14]. Overall, a 

and py subunits from different Gi/Go-coupled receptors have been shown to activate various 

target effectors [15,16]. The a subunit can inhibit adenylyl cyclase and Ca2* influx via 

voltage-dependent Ca2* channels, increase K* efflux via ATP-sensitive K* channels, and 

activate cGMP phosphodiesterase, whereas the Py subunit can activate several enzymes 
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such as PLC-p, G-protein coupled receptor kinase, phospholipase A2 and Ptdlns 3-kinase 

[17-20]. 

An increasing number of cross-talk mechanisms have emerged among several G-

protein-coupled receptors, which involve all levels of the signal cascade. Cross-talks 

between Gq and Gi/Go have been described in human neuroblastoma SH-SY5Y and COS 

cells [21-23]. In HIT-T15 cells, AVP binds V1b receptors [24], which couples to Gq, thus 

activating PLC-p through the aq subunit with subsequent hydrolysis of Ptdlns(4,5)P2 to 

lns(1,4,5)P3 and diacylglycerol (DAG) [25]. DAG activates protein kinase C (PKC), while 

lns(1,4,5)P3 promotes Ca2* release from the endoplasmic reticulum (ER), leading to an 

increase in [Ca2*]; [7,26]. In SH-SY5Y cells, SRIF and neuropeptide Y (NPY) increase 

[Ca2*]; after pretreatment with carbachol, a Gq-coupled receptor agonist [22]. SRIF and NPY 

alone fail to increase [Ca2*];. Stimulation of PLC-p by the Py subunit of different G-proteins 

has been shown to occur in addition to aq [27]. Studies in COS-1 cells provide further 

support for the Py dimer mediation of the cross-talk between the Gq- and Gi-coupled 

receptors [23]. Enhancement of Gq-dependent signals by Gi-coupled receptors in COS-7 

cells requires an activated PLC-p and is mediated by the Py dimer [21]. In addition, 

activation of Gi/Go-coupled receptors has been shown to enhance the inositol phosphate 

signals generated by Gq-coupled receptors [28,29]. Although there are reports of cross-talk 

where an increase in inositol phosphate mass formation and [Ca2*]; by Gi/Go occurred after 

activation of Gq-coupled receptors, our findings represent the first example in an endocrine 

cell line, and the first example of the cross-talk between SRIF and AVP receptors. The 

objective of the present study is to provide insights on the mechanism by which SRIF 

increases [Ca2*], and insulin release in the presence of AVP in p-clonal cells HIT-T15. 

MATERIALS AND METHODS 

Materials 

All reagents were purchased from Sigma Chemical Co. (St. Louis, MO, U.S.A.), 

except that fura-2 acetoxymethyl ester (fura-2AM) was from Molecular Probes (Eugene, OR, 

U.S.A.), U-73122,1-[6-[[17p-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1 H-

pyrrole,2,5-dione and U-73343,1-[6-[[17p-3-methoxyestra-1,3,5(10)-trien-17-
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yl]amino]hexyl]-2,5-pyrrolidine-dione were from Biomol Research Laboratory (Plymouth 

Meeting, PA, U.S.A.). 

Cell culture 

HIT-T15 cells (Simian virus 40-transformed Syrian hamster islets) were maintained in 

RPM11640 with 10 % fetal bovine serum and aerated with 5 % COz-95 % air at 37 °C. All 

experiments were performed using cells from passages 80-90. 

[Ca2*], measurement In cell suspension 

5x10® cel ls were grown in 75-cm2  culture f lasks for 5 days unt i l  80-90 % conf luency 

had been reached. Thereafter, the cells were harvested by treatment with trypsin-EDTA 

and prepared for experiments. Measurement of [Ca2*]; was accomplished by loading 20 x 

10® cells with 2 pM fura-2AM for 30 min at 37 °C in Krebs-Ringer bicarbonate buffer (KRB) 

containing (in mM): NaC1136; KCI 4.8; CaCI21.2; MgS04 1.2; Hepes 10; glucose 4 and 0.1 

% BSA, pH 7.4. The loaded cells were centrifuged at 300 x g for 2 min and resuspended at 

a density of 2 x 10® cells/ml with KRB. The 340/380 nm fluorescence ratios were monitored 

by a SLM-8000 spectrofluorometer (SLM instruments, Urbana, IL, U.S.A.). The [Ca2*]; was 

calibrated as previously described [4]. Experimental conditions in Ca2*-free medium were 

created by centrifugation at 300 x g for 60 s followed by resuspending the cells in Ca2*-free 

KRB containing 10 pM EGTA. Depletion of ER Ca2* was accomplished by pretreatment with 

thapsigargin (TG), a microsomal Ca2* ATPase inhibitor [30], for 30 min prior to SRIF. The 

involvement of Gi/Go in the SRIF-induced increase in [Ca2*]; was examined by pretreatment 

with PTX (100 ng/ml) for 24 h. All experiments were repeated 4 times. 

[Ca2*], measurement in single cells 

1000-2000 cells were grown for 2-3 days on 22-mm2 glass coverslip inside a 35-mm 

culture dish under similar conditions as described above. Thereafter, the culture medium 

was discarded and the cells loaded with fura-2AM for 30 min at 37 °C. Each coverslip was 

mounted inside a custom-made perfusion chamber, where it was possible to control the 

exposure of cells to different treatments. Measurement of [Ca2*]; from single cells was 

accomplished by mounting the perfusion chamber on the stage of an inverted fluorescence 

microscope (Carl Zeiss, Thomwood, NY, U.S.A.). The fluorescence images were obtained 

(excitation 340 and 380 nm; emission 510±20 nm), background subtracted, and divided on a 
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pixel-by-pixel basis to generate spatially resolved maps of the [Ca2*}. The emitted signals 

were digitalized, recorded and processed using the Attofluor Digital Fluorescence Imaging 

System (Atto Instruments, Rockville, MD, U.S.A.). The [Ca2*} was calculated according to a 

published method [31]. Calibration was performed in situ according the procedure provided 

by Attofluor, using Fura-2 penta K* salt as a standard. 

Measurement off insulin release under perfusion conditions 

The perifusion system used in this study was as previously described [32] with some 

modifications. HIT-T15 cells were grown in 10-mm round glass coverslips inside a 35-mm 

culture dish for 3-4 days until reaching confluency (400-700 x 103 cells). Each coverslip was 

then removed from the culture dish and mounted inside a 0.7-ml perifusion chamber 

(Millipore Swinnex Filter Holders, Waters, Miiford, MA, U S A.) with cells facing inside of the 

chamber. Initially, the cells were perifused for a 20-min equilibration period at 37 °C with 

modified KRB containing (in mM): NaC1136; KCI 4.8; CaCI2 2.5; KH2P041.2; MgS041.2; 

NaHC03 5; Hepes 10; glucose 4 and 0.1 % BSA, pH 7.4. The flow rate was adjusted to 0.5 

ml/min prior to the experiments and samples collected at a 30-s interval. Each coverslip 

was exposed to one of four treatments: control, which was treated with KRB; 1 nM AVP; 100 

nM SRIF; 1 nM AVP followed by 100 nM SRIF. At the end of each experiment, cells were 

treated with 20 mM KCI to test their ability to release insulin. Once the experiments had 

been completed, the glass coverslips were removed from the perifusion chambers and the 

number of cells quantified. The insulin concentrations of effluent samples were measured 

by RIA. Each treatment group was replicated four times. 

Data analysis 

Traces from the [Ca2*} measurement are representative of 4 experiments. Results 

from the insulin release under perifusion conditions are presented as mean ± S.E.M., and 

were analyzed using analysis of variance (ANOVA) to determine the effect of treatment. 

Fisher's least significant difference test was used to determine the difference between 

means for which the ANOVA indicated a significant F ratio (P < 0.05). 
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RESULTS 

SRIF-lnduced increase in [Ca**], in the presence of AVP 

In the presence of 1 nM AVP, 100 nM SRIF induced a sharp and transient increase 

in [Ca2*]i, followed by a rapid decline to the sub-basal level. To determine if this effect was 

due to hormone treatment, we replaced AVP and SRIF with KRB. SRIF failed to increase 

[Ca2*]i in KRB and no further increases in [Ca2*], was observed when KRB was added in the 

presence of AVP. Treatment with SRIF prior to AVP did not enhance AVP-induced increase 

in [Ca2*]j. The increase in [Ca2*]i by SRIF in the presence of AVP was still apparent even 

after 60 min of AVP treatment (Figure 1). The response to 100 nM SRIF gradually 

increased with a decrease in the AVP concentration from 100 nM to 100 pM. In the 

presence of 1 nM AVP, 100 nM SRIF caused a near maximal increase in [Ca2*],. A 

concentration-dependent response to 100 pM-1 |iM SRIF was also observed in the 

presence of 1 nM AVP, where near maximal response was obtained with 100 nM SRIF 

(Figure 2). For this reason, we chose 1 nM AVP followed by 100 nM SRIF to investigate the 

mechanism underlying SRIF-induced increase in [Ca2*]i and insulin release in HIT-T15 cells. 

By measuring [Ca2*], in single cells through imaging analysis, we determined if 

temporary pre-exposure to AVP or its presence was required for the SRIF-induced increase 

in [Ca2*]i. In the presence of AVP, SRIF increased [Ca2*]i, whereas temporary pre-exposure 

to AVP, followed by a 5-min washout period abolished the increase in [Ca2*]i by SRIF 

(Figure 3). 

In addition, we investigated if the rapid decline in [Ca2*} to sub-basal levels after the 

increase by SRIF was due to closure of voltage-dependent Ca2* channels, thereby inhibiting 

the Ca2* influx, or through efflux from the cytosol through plasma membrane Ca2*-ATPases. 

Pretreatment with Bay K8644 (1 pM), which opens voltage-dependent Ca2* channels or 

experiments in Ca2*-free medium failed to alter the decline in [Ca2*],. Pretreatment with 

Ca2*-ATPases inhibitors such as sodium orthovanadate (0.01 - 1 mM), eosin Y(0.01 -1 

mM), lanthanum chloride (0.16-1 mM), ruthenium red (10 |iM), or nickel sulfate (0.01 -10 

mM) also failed to alter the sharp decrease in [Ca2*], (data not shown). 

SRIF-induced insulin release 

We measured insulin release under perifusion conditions to determine if the increase 

in [Ca2*], by SRIF also resulted in insulin exocytosis. Perifusion with KRB or SRIF alone did 
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not increase insulin release. In the presence of AVP, SRIF induced a significant increase in 

insulin release, which was also characterized by a sharp peak, followed by a rapid decline to 

sub-basal levels. The stimulatory effect of SRIF lasted 2-3 min. Treatment with AVP alone 

induced a gradual increase in insulin release with a lower amplitude and a longer period 

(Figure 4). 

Mediation by PTX-sensitive protein(s) of the SRIF effects 

Since SRIF receptors belong to the PTX-sensitive Gi/Go family of G-proteins, we 

hypothesized that Gi/Go also mediated the increase in [Ca2*]; by SRIF. Pretreatment of HIT-

T15 cells with PTX abolished the increase in [Ca2*} by 100 nM SRIF, whereas it did not alter 

the increase in [Ca2*} by 1 nM AVP, which signals via Gq (Figure 5). 

Involvement of PLC pathway 

We examined if the PLC pathway was also involved in the SRIF signaling by using 

U-73122, a specific PLC inhibitor [33]. Pretreatment with U-73122 (1-4 nM) for 100 s before 

100 nM SRIF (but after 1 nM AVP) inhibited the increase in [Ca2*} by SRIF in a 

concentration-dependent manner (data not shown). U-73122 (4 nM) abolished the increase 

in [Ca2*} by SRIF (Figure 6). Pretreatment with 4 jiM U-73343, an inactive analog of U-

73122 failed to inhibit the SRIF-induced increase in [Ca2*}. When U-73122 was given prior 

to AVP, the responses to AVP and subsequently to SRIF were abolished. 

Endoplasmic reticulum as the main source for Ca2* release 

Activation of the PLC pathway often leads to the formation of lns(1,4,5)P3, which 

increases Ca2* release from the ER by binding to lns(1,4,5)P3 receptors [34]. We 

hypothesized that ER was the primary source of Ca2* for the sharp and transient increase in 

[Ca2*} by SRIF. Pretreatment with 1 pM TG after 1 nM AVP abolished the increase in [Ca2*} 

by 100 nM SRIF. In Ca2*-free medium supplemented with 10 nM EGTA, SRIF maintained 

its ability to increase [Ca2*} (Figure 7). 

Cross-talk between Gq and Gi/Go 

The SRIF-induced increase in [Ca2*} and insulin release in the presence of AVP may 

involve a cross-talk between Gq and Gi/Go. We examined if in the presence of bradykinin 

(BK), another Gq-coupled receptor agonist [35], and also in the presence of isoproterenol 
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(Gs-coupled receptor agonist) [36] or medetomidine (Gi/Go-coupled receptor agonist) [37], 

SRIF would maintain its ability to increase [Ca2*}. In the presence of BK (1 nM-1 pM BK), 

100 nM SRIF increased [Ca2*}. Similar to AVP, the response to SRIF gradually increased 

with a decrease in the BK concentration from 1 gM to10 nM. In the presence of 10 pM 

isoproterenol, which induced a small increase in [Ca2*} or 10 pM medetomidine, SRIF failed 

to increase [Ca2*}. In the presence of 1 nM AVP, 10 pM medetomidine also increased 

[Ca2*]; (Figure 8). 

DISCUSSION 

The present study demonstrated that in the presence of AVP, SRIF increased [Ca2*];, 

which was characterized by a sharp and transient peak followed by a rapid decline to the 

sub-basal level. Experiments with TG, which depletes Ca2* stores from the ER, suggested 

that Ca2* released from this organelle is mainly responsible for the sharp and transient 

increase in [Ca2*]; by SRIF. Pretreatment with Ca2*-ATPases inhibitors or experiments in 

Ca2*-free medium failed to alter the rapid decline in [Ca2*]; to sub-basal level. Further 

investigation will be needed to determine the mechanism responsible for this sharp decline 

in [Ca2*];. 

One unexpected finding was the ability of SRIF to increase [Ca2*]; even after 60 min 

of AVP treatment. In HIT-T15 cells, the V1b receptor is coupled to Gq, which upon activation 

stimulates PLC-p through its aq subunit [24]. The hydrolysis of Ptdlns(4,5)P2 by PLC-p 

results in lns(1,4,5)P3 and DAG formation, where DAG activates protein kinase C (PKC) and 

lns(1,4,5)P3 promotes Ca2* release from the ER [7,26,34]. Phosphorylation of AVP 

receptors and PLC-p by PKC after activation of the AVP receptor occurs during 

desensitization [38-41]. This event accounts in part for the reduction in the responsiveness 

of cells to further stimulation by AVP. However, in our system, desensitization of AVP 

receptors and PLC-p may not be apparent during the stimulation by a small concentration of 

AVP (1 nM), since we demonstrated that the presence of AVP is required for SRIF to 

increase [Ca2*]; and this increase could be observed even after 60 min of treatment with 1 

nMof AVP. 

An increase in [Ca2*]; usually triggers exocytosis [42]. During perifusion experiments, 

SRIF alone did not increase insulin release, but enhanced the AVP-induced insulin release. 
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These results were consistent with data on [Ca2*}, which suggested that the increase in 

insulin release was mediated by the increase in [Ca2*}. 

Five distinct SRIF receptor subtypes have been characterized and designated as 

sstr1-5, where two splice variants of the sstr2 exist, sstr2a and sstr2b [43,44], All 5 receptor 

subtypes are coupled to Gi/Go. Pretreatment with PTX abolished the increase in [Ca2*} by 

SRIF, suggesting that Gi/Go also mediate the SRIF effects. PTX pretreatment did not alter 

the increase in [Ca2*} by AVP, which signals via Gq, a PTX-insensitive family of G-proteins. 

The SRIF receptor subtype that mediates the increase in [Ca2*} and insulin release remains 

to be characterized. 

Activation of PLC-p frequently leads to an increase in lns(1,4,5)P3 mass formation 

and [Ca2*}, where the involvement of Gi/Go subunits, mainly the Py dimer in these increases 

have been reported by others [17,21,23]. In our study, the increase in [Ca2*} by SRIF was 

inhibited by U-73122, a specific PLC inhibitor, but not by U-73343, an inactive analog of U-

73122. These findings suggested that the effects of SRIF are mediated through the PLC 

pathway. Pretreatment with U-73122 prior to AVP abolished the responses to AVP and 

subsequently to SRIF, which suggested that activation of PLC-p by AVP is essential for 

SRIF to increase [Ca2*}. To date, reports addressing the stimulatory effects of Gi/Go-

coupled receptor agonists on the PLC-p pathway have been made through measurement of 

lns(1,4,5)P3 mass formation or using inhibitors/antibodies against PLC [18,21,23], which 

does not provide evidence to preclude the events occurring prior to activation of PLC-p, 

such as an increase in the formation of Ptdlns(4,5)P2. 

We have demonstrated that the cross-talk is specific to Gq and Gi/Go, although not 

limited to the AVP and SRIF receptors, since in the presence of BK, SRIF increased [Ca2*}. 

After AVP, treatment with medetomidine, an «^adrenoceptor agonist that stimulates Gi/Go, 

also increased [Ca2*}. When isoproterenol, a p-adrenoceptor agonist that stimulates Gs, or 

medetomidine was given prior to SRIF, it failed to increase [Ca2*}. 

In summary, our findings suggested that in the presence of AVP, SRIF increased 

[Ca2*]; and insulin release from HIT-T15 cells through Gi/Go, which involves the PLC 

pathway and Ca2* release from the ER. The cross-talk mechanism is specific to Gq and 

Gi/Go, although it may not be limited only to the G-protein system coupled to the AVP or 

SRIF receptors. Further work on primary p-cells and islets will be necessary to determine 

the physiological significance of the present findings. 
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Figure 1 Somatostatin (SRIF)-induced increase in [Ca**], in the presence of AVP 

Lower panel: In the presence of 1 nM AVP, 100 nM SRIF increased [Ca2*]i (right). The 

increase in [Ca2*} by SRIF was observed even after 60 min of AVP treatment (left). Upper 

panel: The effect of SRIF was confirmed by replacing AVP with working buffer (KRB). No 

increase in [Ca2*]; was observed after SRIF treatment (left). When SRIF was replaced by 

KRB, only the typical increase in [Ca2*]i by AVP was observed (middle). Treatment with 

SRIF prior to AVP did not induce further increase in [Ca2*]; by AVP (Right). Traces are 

representative of 4 experiments. 
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Figure 2 Dose responses to AVP and SRIF 

Upper panel: The response to 100 nM SRIF gradually increased with a decrease in the AVP 

concentration from 100 nM to100 pM, where a near maximal response was obtained in the 

presence of AVP. Lower panel: A concentration-dependent response to 100 pM -1 pM SRIF 

was also observed in the presence of 1 nM AVP, where a near maximal response was 

obtained with 100 nM SRIF. Traces are representative of 4 experiments. 
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Figure 3 Effect of AVP washout on SRIF-induced increase in [Ca2*], 

Upper panel: In the presence of 1nM AVP, SRIF (100 nM) increased [Ca2*]i in single cells 

during Ca2* imaging analysis (n=10 cells). Lower panel: Temporary pre-exposure to AVP, 

followed by a 5-min washout period, abolished the increase in [Ca2*]; by SRIF (n-9 cells). 

Traces are representative of 4 experiments. 
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Figure 4 Effect of SRIF on insulin release in the presence of AVP 

Upper panel: In control experiments, perifusion with Krebs-Ringer bicarbonate buffer (KRB) 

(A) or 100 nM SRIF alone (•) did not increase insulin release. Lower panel: In the 

presence of 1 nM AVP, SRIF (•) increased insulin release, which was characterized by a 

sharp peak, followed by a rapid decline to sub-basal level. Treatment with 1 nM AVP alone 

(•) induced a gradual increase in insulin release with a lower amplitude but a longer period. 

Treatment with 20 mM KCI at the end of the perifusion experiments also stimulated insulin 

release. Each data point represents the mean ± S.E.M. (n=4), *P < 0.05 between the AVP 

and AVP + SRIF treated groups at the corresponding times. 
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Figure 5 Effect of pertussis-toxin (PTX) on SRIF Induced increase in [Ca2*], 

Pretreatment with PTX (100 ng/ml, 24 h) abolished the increase in [Ca2*} by 100 nM SRIF. 

PTX pretreatment had no effects on the response to 1nM AVP. Traces are representative of 

4 experiments. 
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Figure 6 Effects of U-73122 and U-73343 on SRIF-induced Increase in [Ca2*]i 

Pretreatment with U-73122 (4 nM), a specific PLC inhibitor, after 40 s of 1 nM AVP and 100 

s prior to SRIF, abolished the increase in [Ca23 by 100 nM SRIF (middle panel). 

Pretreatment with U-73122 for 100 s prior to AVP (right panel), abolished the responses to 

AVP and subsequently to SRIF. Traces are representative of 4 experiments. Pretreatment 

with 4 nM U-73343 (left panel), an inactive analog of U-73122, failed to inhibit the increase 

in [Ca21iby SRIF. 
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Figure 7 Effects of Ca2*-free environment and thapsigargin (TG) on SRIF-induced 

increase in [Ca**], 

Upper panel: In Ca2*-free medium supplemented with 10 *iM EGTA, 100 nM SRIF 

maintained its ability to increase [Ca2*]: in the presence of AVP. Lower panel: Pretreatment 

with TG (1 gM). which depletes endoplasmic reticulum Ca2* stores, abolished the increase 

in [Ca2*]: by SRIF. Traces are representative of 4 experiments. 
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Figure 8 Interactions between other agonists off G-protein-coupled receptors 

Upper panel: In the presence of bradykinin, another Gq-coupled receptor agonist, 100 nM 

SRIF also increased [Ca2*]: Lower panel: In the presence of isoproterenol (10 |iM), a Gs-

coupled receptor agonist (left), or medetomidine (10 gM), a Gi/Go-coupled receptor agonist 

(middle), 100 nM SRIF failed to increase [Ca2*}. In the presence of 1 nM AVP, 

medetomidine (10 |iM), increased [Ca2*} (right). Traces are representative of 4 

experiments. 
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CHAPTER III SSTR2 MEDIATES THE SOMATOSTATIN-INDUCED INCREASE IN 

INTRACELLULAR Ca2* CONCENTRATION AND INSULIN SECRETION IN THE 

PRESENCE OF ARGININE VASOPRESSIN IN CLONAL p-CELLS HIT-T15 

A paper accepted for publication in Life Sciences 

Henrique Cheng, Sirintom Yibchok-anun, David H. Coy and Walter H. Hsu 

ABSTRACT 

The effects of somatostatin (SRIF) are mediated through the seven transmembrane 

receptor family that signals via Gi/Go. To date, five distinct SRIF receptors have been 

characterized and designated SSTR1-5. We have characterized the SRIF receptor that 

mediates the increase in [Ca2*} and insulin secretion in HIT-T15 cells (Simian virus 40-

transformed Syrian hamster islets) using high affinity, subtype selective agonists for SSTR1 

(L-797,591 ), SSTR2 (L-779,976), SSTR3 (L-796,778), SSTR4 (L-803,087), SSTR5 (L-

817,818) and PRL-2903, a specific SSTR2 antagonist. In the presence of arginine 

vasopressin (AVP), SRIF increased [Ca2*} and insulin secretion. Treatment with the SSTR2 

agonist L-779,976 resulted in similar responses to SRIF. In addition, L-779,976 increased 

both [Ca2*} and insulin secretion in a dose-dependent manner. Treatment with L-779,976 

alone did not alter [Ca2*} or basal insulin secretion. In the presence of AVP, all other SRIF 

receptor agonists failed to increase [Ca2*} and insulin secretion. The effects of SRIF and L-

779,976 were abolished by the SSTR2 antagonist PRL-2903. Our results suggest that the 

mechanism underlying SRIF-induced insulin secretion in HIT-T15 cells be mediated through 

the SSTR2. 

INTRODUCTION 

Somatostatin (SRIF), a tetradecapeptide hormone that has diverse physiological 

actions, was initially isolated and identified as an inhibitor of growth hormone secretion from 

anterior pituitary cells [1]. SRIF-containing neurons are found in the central nervous system 

[2], In addition, SRIF is also present in the gut, where it promotes smooth muscle 
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contraction [3]. In the pancreas, SRIF is synthesized and released from 8-cells, which 

inhibits both endocrine and exocrine secretions [4-6]. The inhibitory effect of SRIF on insulin 

secretion is well-characterized in the whole pancreas [7-9], pancreatic islets [10,11] and 

several p-cell lines [12-16]. The inhibitory effect of SRIF on insulin secretion is associated 

with a decrease in cAMP and a decrease in [Ca2*} through inhibiting Ca2* influx via L-type 

voltage-dependent Ca2* channels [14,17,18] and opening ATP-sensitive K* channels [19]. 

Arginine vasopressin (AVP), a hormone normally present in the posterior pituitary 

gland, is also found in the pancreas [20]. Previously, we demonstrated that in the presence 

of AVP, which signals via Gq, SRIF increased [Ca2*} leading to insulin secretion in HIT-T15 

cells [21,22]. Our findings suggested that the mechanism by which SRIF signals be through 

Gi/Go, and involve the phospholipase C pathway and mainly Ca2* release from the 

endoplasmic reticulum. The increase in [Ca2*} by SRIF leads to insulin secretion. 

Five distinct SRIF receptors have been characterized and designated as SSTR1-5, 

where two splice variants of the SSTR2 exists, SSTR2a and SSTR2b [23-25]. Studies 

utilizing rabbit polyclonal antibodies against the human SSTR1-5 and double-label confocal 

fluorescence immunocytochemistry have demonstrated that all five subtypes are variably 

expressed in human pancreatic islets, where SSTR1 and SSTR5 are dominant in p-cells 

[26]. Studies in rat p-cells have provided evidence for the SSTR5 being the mediator for the 

inhibitory effects of SRIF [27]. This observation has been confirmed in knockout mice, 

where SSTR5 mediates the inhibitory effect on insulin secretion [28]. However, the receptor 

subtype that mediates the SRIF effects in HIT-T15 cells remains unknown. The lack of 

specific antagonists for all five different receptor subtypes makes it impossible to 

characterize these through antagonism studies. Fortunately, the identification of high-

affinity, subtype-selective agonists for SSTR1-5 through combinatorial chemistry [29] now 

provides a direct approach for the characterization and definition of their physiological roles. 

The objective of the study is to characterize the SRIF receptor subtype that mediates the 

increase in [Ca2*} leading to insulin secretion in the presence of AVP in HIT-T15 cells. 

MATERIALS AND METHODS 

Reagents 

All reagents were purchased from Sigma Chemical (St. Louis, MO), except that fura-

2 acetoxymethyl ester (fura-2AM) was from Molecular Probes (Eugene, OR); The SRIF 
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receptor subtype-selective agonists: L-797,591 (SSTR1 ), L-779,976 (SSTR2), L-796,778 

(SSTR3), L-803,087 (SSTR4) and L-817,818 (SSTR5) were donated by Merck Research 

Laboratories (West Point, PA); The SSTR2 antagonist PRL-2903 was synthesized by 

standard solid phase methodologies, purified and analyzed by mass spectrometry as 

previously described [30,31]. 

Cell culture 

HIT-T15 cells were maintained in RPM11640 with 10 % fetal bovine serum and 

aerated with 5 % C02-95 % air at 37 °C. All experiments were performed using cells from 

passages 80-90. 

[Ca2*], measurement in cell suspension 

5x10® ce l l s  were  g rown in  75-cm 2  cu l tu re  f lasks  fo r  5  days  un t i l  80-90  % conf luency  

had been reached. Thereafter, the cells were harvested by treatment with trypsin-EDTA 

and prepared for experiments. Measurement of [Ca2*]; was accomplished by loading 20 x 

10® cells with 2 pM fura-2AM for 30 min at 37 °C in Krebs-Ringer bicarbonate buffer (KRB) 

containing (in mM): NaC1136; KCI 4.8; CaCI2 1.2; MgS04 1.2; HEPES 10; glucose 4 and 0.1 

% BSA, pH 7.4. The loaded cells were centrifuged at 300 x g for 2 min and resuspended at 

a density of 2 x 10® cells/ml with dye-free KRB until used. The 340/380 nm fluorescence 

ratios were monitored by an SLM-8000 spectrofluorometer (SLM instruments, Urbana, IL). 

The [Ca2*]; was calibrated as previously described [32]. Experiments with PRL-2903 were 

done by pretreating HIT-T15 cells with this SSTR2 antagonist for 5 min prior to the [Ca2*]; 

measurement. The SRIF receptor subtype-selective agonists were given after 100 s of AVP 

treatment. All experiments were repeated 4 times. 

Measurement of insulin secretion understate incubation conditions 

HIT-T15 cells were plated into 24-well plates at - 2 x 105 cells/well and grown for 3-4 

days. Measurement of insulin secretion was accomplished by replacing the culture medium 

with modified KRB containing (in mM): NaC1136; KCI 4.8; CaCI22.5; KH2P041.2; MgS04 

1.2; NaHC035; HEPES 10; glucose 4 and 0.1 % BSA, pH 7.4. After a 15-min equilibration 

period at 37 °C, the cells were exposed to one the following treatments: (1 ) AVP; (2) SRIF; 

(3) AVP followed by SRIF or one of the SRIF receptor subtype-selective agonists (100 s 

interval); (4) 5 min of PRL-2903 pretreatment followed by AVP and SRIF or L-779,976. The 
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KRB was collected from each well for insulin RIA [32] 5 min after SRIF or the SRIF receptor 

subtype-selective agonist treatment. The number of cells from each well was then 

determined. Each treatment was done in duplicate and all experiments were repeated four 

times, with the exception of dose-dependent experiments for L-779,976, which were done in 

triplicate and repeated three times. 

Data analysis 

Traces from the [Ca2*} measurement are representative of 4 experiments. Results 

from the insulin secretion under static incubation conditions are presented as mean ± SEM, 

and were analyzed using the SAS PROC MIXED procedure and a randomized block design. 

There were two factors, treatment and block. Individual mean comparisons were performed 

using the F test. The significance level was set at P < 0.05. 

RESULTS AND DISCUSSION 

Previously, we reported in HIT-T15 cells, SRIF increased [Ca2*} leading to insulin 

secretion in the presence of AVP, whereas treatment with SRIF alone failed to do so [21,22]. 

The increase in [Ca2*} by SRIF was characterized by a sharp and transient increase, 

followed by a rapid decline to sub-basal levels. Treatment with 100 nM SRIF resulted in a 

sub-maximal increase in [Ca2*} in the presence of 1 nM AVP. In the present study, we 

characterized the SRIF receptor subtype that mediates the increase in [Ca2*} leading to 

insulin secretion using SRIF receptor subtype-selective agonists and PRL-2903, a specific 

SSTR2 antagonist. 

We demonstrated the ability of 100 nM SRIF to increase [Ca2*], in the presence of 1 

nM AVP (Fig. 1 ). Each SRIF receptor subtype-selective agonist was tested at 1 pM 

concentration in the presence of 1 nM AVP, with the exception of L-817,818 (a SSTR5 

agonist), which was tested at 100 nM. L-817,818 itself emitted fluorescence at 1 pM 

concentration. In the presence of AVP, only L-779,976 (a SSTR2 agonist) increased [Ca2*} 

in a similar manner to SRIF (Fig. 1). All other SRIF receptor agonists failed to increase 

[Ca2*]; (Fig. 1). This suggested that the SSTR2 be involved in the SRIF-induced increase in 

[Ca2*], 

Next, we measured insulin secretion to determine if the increase in [Ca2*], by L-

779,976 also lead to insulin exocytosis, since an increase in [Ca2*]; usually triggers hormone 



www.manaraa.com

56 

exocytosis [33]. Under static incubation conditions, 1 pM of each SRIF receptor subtype-

selective agonist was tested in the presence of 1 nM AVP. Treatment with AVP alone 

resulted in - 2 fold increase in insulin secretion compared to basal controls (P < 0.05). In 

the presence of 1 nM AVP, both SRIF and L-779,976 further increased insulin secretion ~ 

1.5 fold compared to AVP alone (P < 0.05) or - 3 fold to basal controls (P < 0.05). All other 

SRIF receptor agonists failed to further increase insulin secretion in the presence of AVP. 

Treatment with SRIF alone did not increase insulin secretion (Fig. 2). In this study, 

treatment with the SRIF receptor agonists alone did not alter basal [Ca2*} or insulin 

secretion from HIT-T15 cells (data not shown). 

In the presence of 1 nM AVP, L-779,976 (10 pM-1pM) increased [Ca2*} and insulin 

secretion in a dose-dependent manner (Fig. 3). Similar to SRIF, 100 nM L-779,976 also 

resulted in a sub-maximal increase in [Ca2*}. Results from static incubation experiments 

suggested that no further increase in insulin secretion be induced by L-779,976 at 

concentrations greater than 100 nM. This is attributable to the fact that the increase in 

[Ca2*}, necessary for maximal insulin secretion, was reached with 100 nM L-779,976. 

Finally, we confirmed the involvement of the SSTR2 by pretreatment of HIT-T15 cells 

with a specific SSTR2 antagonist, PRL-2903 [34], to determine whether it would antagonize 

the increases in [Ca2*} and insulin secretion by both SRIF and L-779,976. Pretreatment with 

1 pM PRL-2903 for 5 min abolished the SRIF- and L-779,976-induced increases in [Ca2*} 

(Fig. 4) and insulin secretion (Fig. 5). In addition, PRL-2903 (10 nM-1 pM) inhibited the 

SRIF- and L-779,976-induced increases in insulin secretion in a dose-dependent manner 

(Fig. 5). Treatment with PRL-2903 had no effect on basal [Ca2*} and insulin secretion or 

responses to AVP (data not shown). 

The SRIF receptor subtype that mediates the inhibitory effects of SRIF in clonal p-

cells HIT-T15 has yet to be described. SSTR5 is responsible for the inhibitory effects of 

SRIF on insulin secretion in rats and mice [27,28]. Since HIT-T15 cells are derived from 

hamster, there is a possibility that another SRIF receptor subtype, possibly the SSTR2, may 

mediate the inhibitory effects of SRIF in this cell line [14,17,18]. Although results from our 

study suggested that the SSTR2 mediate the increase in [Ca2*]; and insulin secretion by 

SRIF, a cross-talk between Gq and Gi/Go may account for the differences between the 

inhibitory and stimulatory effects of SRIF. In the presence of carbachol, which signals via 

Gq, similar increase in [Ca2*]; by SRIF is seen in human neuroblastoma SH-SY5Y cells [35]. 

Additional reports regarding the cross-talk between Gq and Gi/Go have also been described 
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in COS cells [36,37], where activation of a Gi/Go-coupled receptor increased IP3 formation 

after activation of a Gq-coupled receptor. Further studies are warranted to confirm the 

involvement of the SSTR2 on the inhibitory effects of SRIF. 

In summary, our findings suggest that the SSTR2 mediates the SRIF-induced 

increases in [Ca2*]; and insulin secretion in the presence of AVP in HIT-T15 cells. This was 

further confirmed by the ability of L-779,976, a specific SSTR2 agonist, to increase both 

[Ca2*]; and insulin secretion in a similar manner to SRIF. In addition, PRL-2903, a specific 

SSTR2 antagonist, inhibited the SRIF- and L-779,976-induced increases in [Ca2*], and 

insulin secretion. This is the first report in clonal 0-cell HIT-T15 describing the involvement of 

a SRIF receptor subtype on the effects of SRIF on [Ca2*]; and insulin secretion. The 

physiological significance of the current finding remains to be determined. 
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Figure 1 Effect of SRIF receptor subtype-selective agonists L-797,591 (SSTR1 ), L-779,976 

(SSTR2), L-796,778 (SSTR3), L-803,087 (SSTR4) and L-817,818 (SSTR5) on [Ca2*],. In the 

presence of AVP, SRIF increased [Ca2*]; during Ca2* measurement experiments. Treatment 

with L-779,976 also increased [Ca2*]; in a similar manner as for SRIF. All other SRIF 

receptor agonists failed to increase [Ca2*]; in the presence of AVP. No further increase in 

[Ca2*]; was observed with AVP alone after 100 s. Traces are representative of 4 

experiments. 
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Figure 2 Effect of SRIF receptor subtype-selective agonists L-797,591 (SSTR1 ), L-779,976 

(SSTR2), L-796,778 (SSTR3), L-803,087 (SSTR4) and L-817,818 (SSTR5) on insulin 

secretion. Under static incubation conditions, treatment with AVP alone increased insulin 

secretion (*P < 0.05 compared to basal controls). In the presence of AVP, both SRIF and L-

779,976 further increased insulin secretion compared to AVP alone (**P < 0.05). All other 

SRIF receptor agonists failed to further increase insulin secretion in the presence of AVP. 

Treatment with SRIF alone did not increase insulin secretion. In this study, treatment with 

the SRIF receptor subtype-selective agonists alone did not alter basal insulin secretion. 

Values are mean ± S.E.M. (n = 4 cultures with duplicates). 



www.manaraa.com

64 

1 nM AVP 

"3 

450 

400 

350 

300 

250 

200 

150 

100 
CONTROL 10 pM 100 pM 1 nM 

1 nM AVP 

10 nM 100 nM 1 pM 

o 400 

$200 

CONTROL 10 pM 100 pM 1 nM 10 nM 100 nM 1 pM 

L-779,976 

Figure 3 Dose-dependent response to L-779,976, a specific SSTR2 agonist. In the 

presence of AVP, L-779,976 increased [Ca2*} (upper panel/n=4) and insulin secretion (lower 

panel/n=3 cultures with triplicates) in a dose-dependent manner. Treatment with 100 nM L-

779,976 resulted in sub-maximal Ca2* increases and a maximal insulin secretion. Values 

are mean ± S.E.M. 
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induced increases in [Ca2*], Pretreatment with PRL-2903 for 5 min prior to SRIF (upper 

panel) or L-779,976 (lower panel) abolished the increase in [Ca2*} by both agonists in the 

presence of AVP. Traces are representative of 4 experiments. 
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Figure 5 Effect of PRL-2903, a specific SSTR2 antagonist on SRIF- and L-779,976-induced 

increases in insulin secretion. Pretreatment with PRL-2903 for 5 min prior to SRIF (upper 

panel) or L-779.976 (lower panel) inhibited further increases in insulin secretion in a dose-

dependent manner (*P < 0.05 compared to basal controls; **P < 0.05 compared to 1 nM 

PRL-2903 or AVP alone group). Values are mean ± S.E.M. (n = 4 cultures with duplicates). 
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T15: MECHANISMS FOR ITS PARADOXICAL INCREASE IN INSULIN RELEASE 

A paper submitted for publication in the Journal of Biological Chemistry 

Henrique Cheng, Sirintorn Yibchok-anun, Nipattra Debavalya, Jing Ding, F. Anderson 

Norn's and Walter H. Hsu 

ABSTRACT 

Phosphatidylinosito! 4,5-bisphosphate (PIP2) is best known for its ability to serve as a 

precursor for the second messengers inositol 1,4,5-triphosphate (IP3) and diacylglycerol 

(DAG), which are generated from the hydrolysis of PIP2 by phospholipase C (PLC). 

Previously, we demonstrated that in the presence of arginine vasopressin (AVP), 

somatostatin (SRIF) increased [Ca2*]>, leading to insulin release from HIT-T15 cells via Gv0 

and the PLC pathway. Since SRIF alone failed to increase [Ca2*]j, we hypothesized that 

SRIF increases PIP2 synthesis, which serves as additional substrate for preactivated PLC-p 

to generate IP3. In addition, we determined which G-protein subunit mediates this effect of 

SRIF. Administration of antibody against the (3 subunit of Gw, into single cells inhibited the 

increase in [Ca2*]f by SRIF, but antibodies against Gia1/Gia2 and GiaVGoc failed to do so. In 

the presence of AVP, administration of PIP2 into single cells increased [Ca2*]it but PIP2 alone 

failed to increase [Ca2*]i- SRIF increased PIP2 synthesis from PIP in the presence or 

absence of AVP, whereas an increase in IP3 level was observed only in the presence of 

AVP. These results suggest that activation of SRIF receptors, which are coupled to G#,, 

leads to an increase in PIP2 synthesis through the Py dimer. The PIP2 generated by SRIF 

serves as additional substrate for preactivated PLC-p, which hydrolyzes PIP2 to form IP3, 

leading to an increase in [Ca2+]j and insulin release in HIT-T15 cells. The regulation of PIP2 

synthesis by a Gi/0-coupled receptor represents a novel concept in cross-talk between Gq-

and Gi/o-coupled receptors. 
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INTRODUCTION 

Insulin synthesized and secreted from (3-cells is the most important regulator of blood 

glucose levels. Although glucose is the major stimulator for insulin release, several 

hormones have been shown to inhibit or stimulate its release. SRIF synthesized and 

secreted from S-cells, is known for its ability to inhibit insulin release (1-3). In |3-cells, AVP 

binds V1b receptors (4), which are coupled to Gq, thus activating PLC-p (5). Recently, we 

reported that in the presence of AVP, SRIF paradoxically increased [Ca23 and insulin 

release from HIT-T15 cells (6). The effects of SRIF were mediated by Gto, the PLC pathway 

and mainly Ca2* release from the endoplasmic reticulum. The increases in [Ca23 and 

insulin release by SRIF was due to a cross-talk between G„ and Gj/0 (6). 

Signaling via the large family of G protein-coupled receptors can lead to many 

cellular responses, ranging from regulation of hormone release to stimulation of gene 

transcription. PIP2 plays a critical role in intracellular signaling and is best known for its 

ability to serve as the precursor for the second messengers IP3 and DAG, which are 

generated from the hydrolysis of PIP2 by PLCs. Production of IP3 triggers a transient 

increase in [Ca2*]i, while DAG activates protein kinase C (7, 8). Although activation of Gq-

coupled receptors increases [Ca2*]i via the PLC pathway, and activation of GVo-coupled 

receptors inhibits adenylyl cyclase (9,10), there is accumulating evidence that activation of 

one particular signaling pathway can amplify intracellular signaling within a parallel but 

separate pathway. For example, activation of Gto-coupled receptors can enhance inositol 

phosphate signals generated by Gq-coupled receptors (11-13). Enhancement of Gq-

dependent signals through an increase in inositol phosphate formation by Gi/0-coupled 

receptors requires preactivated PLC-P and is mediated by the Py dimer (14). Further 

support for the py dimer mediation of the cross-talk between Gq and Gw, has been reported 

by others (12,15). In SH-SY5Y cells, SRIF increases [Ca2*]i after pretreatment with 

carbachol, a cholinergic agonist, which signals via Gq (16). 

To date, studies examining cross-talk signals between Gq- and Gi/o-coupled 

receptors have been performed through quantification of inositol phosphates and/or [Ca2>]i 

(13-15). In addition, antibodies against PLC-p isozymes (17) or inhibitors such as U-73122 

(6) have also been used to investigate the signaling mechanism of Gto-coupled receptors of 

SRIF. Studies suggest that Gi/0 is responsible for a direct activation of PLC-p (14,17). 

However, treatment with SRIF alone, even at 1 nM failed to increase [Ca2*], and insulin 
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release in our previous study (6). We, therefore, hypothesized that SRIF increases PIP2 

synthesis, thereby increasing the substrate for preactivated PLC-p by AVP. 

In the present study, we examined the involvement of G*, subunits and PIP2 on 

SRIF-induced [Ca2*], increase in the presence of a low concentration of AVP (1nM) in HIT-

T15 cells. Our findings clearly show that SRIF increased IP3 and [Ca2*], through an increase 

in PIP2 synthesis by the py dimer of G .̂ 

MATERIALS AND METHODS 

Materials - All reagents were purchased from Sigma Chemical (St. Louis, MO), 

except that fura-2 acetoxymethyl ester (fura-2AM) was from Molecular Probes (Eugene, OR) 

and rabbit polyclonal antibodies against G /̂G,̂ , Gea/G*» and Gp from Biomol (Plymouth 

Meeting, PA). 

Cell culture - HIT-T15 cells were maintained in RPM11640 with 10 % fetal bovine 

serum and aerated with 5 % COr95 % air at 37 °C. All experiments were performed using 

cells from passages 80-90. 

Measurement of[Ca2*]i in single cells - [Ca2*], was measured as previously described 

(6,18). Cells were loaded with 2 pM fura-2AM in Krebs Ringer Bicarbonate buffer 

containing (in mM): NaC1136; KCI 4.8; CaCI21.2; MgS04 1.2; HEPES 10; glucose 4; 0.1 % 

bovine serum albumin, pH 7.4 for 30 min at 37°C. Measurement of [Ca2*], from single cells 

was accomplished by mounting the 35-mm culture dishes on the stage of an inverted 

fluorescence microscope (Carl Zeiss, Thomwood, NY). Fluorescence images were obtained 

(excitation wavelengths, 340 and 380 nm; emission wavelength, 510 ±20 nm), background 

subtracted, and divided on a pixel-by-pixel basis to generate spatially resolved maps of the 

[Ca2*],. The emitted signals were digitalized, recorded and processed using Attofluor Digital 

Fluorescence Imaging System (Atto Instruments, Rockville, MD). The [Ca2*], was calculated 

according to previously published method (19). Calibration was performed according the 

procedure provided by Attofluor, using fura-2 penta K* as a standard. 

Microinjection protocol - Single cells were grown for 2 days on a glass coverslip of 

custom-made 35-mm culture dishes. Thereafter, cells were loaded with fura-2AM, mounted 
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on the stage of an inverted microscope. Two cells from each dish were injected with 

intracellular buffer and rabbit polyclonal antibodies respectively, using a disposable glass 

pipette (VWR Scientific, West Chester, PA) held by a Narishige MW-3 micromanipulator. 

Pipettes were made by a PE-2 Micropipette Puller (Narishige Scientific Instrument, Tokyo, 

Japan). All antibodies were diluted at 1:100 with intracellular buffer solution containing (in 

mM): K2HP0427; NaH2P04 8; KH2P0426; pH 7.3. Injection pressure was controlled by a 

pressure injection system (Picospritzer II, General Valve, Fairfield, NJ). A 30-min incubation 

period was allowed between the antibody injection and [Ca2*]; measurement. At the end of 

each experiment, cells were depolarized with 10 mM KCI to test membrane integrity. 

Determination of phophatidylinositol phosphate (PIP) and PIP2 - PIP and PIP2 levels 

were measured using thin layer chromatography as previously described (20). HIT-T15 

cells were labeled with 200 pCi/ml of 32P (Perkin Elmer Life Sciences, Boston, MA) in 

phosphate free KRB for 60 min and washed twice by centrifugation at 300 x g for 2 min. For 

experiments, cells were resuspended at a density of 15 x 10® cells/ml/treatment. The 

reactions were terminated by addition of 1 ml ice cold 1M HCI. Phospholipids were 

separated by a chloroform:methanol (1:1 ) mixture. The lower phase was dried under a 

stream of nitrogen, resuspended in 200-500 nL chloroform:methanol (1:1) mixture, and 

spotted on silica gel 60 plates (Merck, Gibbstown, NJ). PIP and PIP2 were identified by 

comigration with unlabeled standards visualized by iodine staining and radiograph into 1-cm 

blocks that were scraped and radioactivity quantified by liquid scintillation counting. 

Determination of IP3 - Measurement of inositol phosphates followed modified 

procedures from those of Hoque et al. (21). Cells were labeled with 20 gCi/ml of myo-[2-
3H]inositol (Perkin Elmer Life Sciences, Boston, MA) at 37°C for 90 min and washed twice 

by centrifugation at 300 x g for 2 min. For experiments, cells were resuspended at a density 

of 20 x 10® cells/ml/treatment. The reactions were terminated by addition of 0.5 ml ice cold 

10% TCA and samples centrifuged at 3000 x g for 20 min at 4°C. The supematants were 

passed through a 200-400 mesh Dowex AG1-X 8 in formate form column (Bio-Rad 

Laboratories, Hercules, CA). Inositol phosphates were eluted by stepwise addition of 0.2, 

0.5, and 1 M ammonium formate, which contained IPi, IP2, and IP3 respectively. 

Radioactivity from each sample was quantified by liquid scintillation counting. 
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Data analysis - All values are presented as mean ± S.E.M. Results were analyzed 

using analysis of variance and individual mean comparisons were made using Least 

Significant Difference test. The significance level was set at P < 0.05. 

RESULTS 

Mediation by fly dimer of SRIF-induced increase in [Ca?*], in the presence of AVP -

We determined which subunit of GVo mediated the SRIF (100 nM)-induced increase in [Ca2*]i 

in the presence of 1 nM AVP by microinjecting antibodies against Gy0 subunits into single 

cells. Antibody (1:100) against the p subunit of Gy0 reduced the response to SRIF by 89 % 

(P < 0.05). In contrast, antibodies against G /̂Git* or GiaVGoo (1:100) did not significantly 

change the response to SRIF (Fig. 1 ). 

SRIF-induced increase in PIP2 synthesis - We hypothesized that SRIF increases 

PIP2 synthesis, which in turn serves as additional substrate for preactivated PLC-p by AVP. 

If this hypothesis is correct, injection of PIP2 into single cells in the presence of 1 nM AVP 

should increase [Ca2*]i in a similar manner to SRIF. Administration of PIP2 (1.5-50 amol) 

into single cells increased [Ca2*], in the presence of AVP in a concentration-dependent 

manner. Microinjection of intracellular buffer did not increase [Ca2*} in the presence of AVP 

(Fig. 2). PIP2 at the highest concentration tested (50 amol), failed to increase [Ca2*! in the 

absence of AVP (data not shown). These results are consistent with our hypothesis that 

SRIF increases PIP2 synthesis. 

We then determined if SRIF increased PIP2 and the time course of this increase. In 

the presence of 1 nM AVP, 100 nM SRIF increased PIP2 8 s post-SRIF administration (P < 

0.05). In addition, there was a decrease in PIP levels, the precursor for PIP2, 8 s post-SRIF 

administration (Fig. 3). Based on these results, we compared PIP2 synthesis by SRIF with 

other treatment groups using the 8-s time frame. 

Treatment with 100 nM SRIF increased PIP2 synthesis in the presence and absence 

of 1 nM AVP (P < 0.05), compared to basal controls. Treatment with AVP alone failed to 

increase PIP2 synthesis (Fig. 4A). Treatment with SRIF resulted in a decrease in PIP levels 

(P < 0.05) in the presence and absence of AVP (Fig. 4B). 
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PIP2 hydrolysis by PLC-p - We hypothesized that PIP2 serves as additional substrate 

for preactivated PLC-p, and thus measured IP3 levels. In the presence of 1 nM AVP, 100 

nM SRIF increased IP3 levels after 10-12 s of SRIF administration (Fig. 5A, P < 0.05). We 

then utilized the 12-s post-SRIF time frame to compare IP3 levels among 4 treatment 

groups. 

In the presence of 1 nM AVP, 100 nM SRIF increased IP3 levels (P < 0.05) 

compared to basal controls. Treatment with SRIF alone failed to increase IP3 levels. 

Treatment with AVP for 112 s induced a small, but significant increase in IP3 levels (P < 

0.05) compared to basal controls (Fig. 5B). 

DISCUSSION 

Previously, we reported in HIT-T15 cells that SRIF increased [Ca2*]j and insulin 

release in the presence of AVP. These effects of SRIF are due to activation of sst2 

receptors (22), and are attributable to a cross-talk between G^and Gq (6). Cross-talk 

between Gq- and Gi/0-coupled receptors has been reported in other systems. For example, 

activation of G -̂proteins coupled to adenosine A1 receptor enhances the stimulation of 

PLC-p by Gq-coupled receptors such as -adrenergic, bradykinin, histamine Hlt and 

muscarinic receptors (23). For such a cross-talk, activation of GVo alone usually has no 

effect, but it enhances signals generated by Gq, particularly when Gq is activated prior to GVo 

(11-13, 16). Activation of Gj/o-coupled adenosine A1, a2 adrenergic receptors (12) or 5-or k-

opioid receptors (13) enhances inositol phosphate formation generated by G„-coupled 

receptors in COS cells. In CHO cells, neuropeptide Y, a G -̂coupled receptor agonist, 

enhances inositol phosphate formation generated by ATP, a Gq-coupled receptor agonist 

(15). In addition, activation of 5-opioid receptors that are coupled to G*, in SH-SY5Y cells 

increases [Ca2+]j after activation of m3 muscarinic receptors that are coupled to Gq (13). 

SRIF also increases [Ca2*]; after activation of the Gq-coupled muscarinic receptor in SH-

SY5Y cells (16). Studies have suggested that enhancement of Gq signals by G  ̂is through 

activation of PLC (14) or interaction with a step after PLC activation (13), but none of them 

have attributed the effect of G  ̂to a step before PLC activation. In the present study, we 

have demonstrated for the first time that SRIF can increase PIP2 synthesis from PIP, which 

in turn serves as additional substrate for preactivated PLC-p by AVP to generate high levels 

of IP3. Without a preactivated PLC-p, SRIF failed to increase IP3 levels, [Ca2*]; and insulin 
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release (6). These findings are further supported by administration of PIP2 into the cells, in 

which PIP2alone failed to increase [Ca23, whereas PIP2 in the presence of a small 

concentration of AVP (1 nM) increased [Ca2*];. 

To date, studies on the cross-talk between Gq and Gto suggest that the |3y dimer of 

Gi/o is responsible for the enhancement of Gq-generated signals (12-15). We demonstrated 

that the antibody against the (3 subunit of GVo nearly abolished the SRIF-induced increase in 

[Ca2*];, whereas antibodies against G /̂G^and Gba/G*, failed to do so. Our findings are 

consistent with the literature, and further suggests that the increases in [Ca2*]; and insulin 

released by SRIF are mediated through the py dimer. 

Several studies have shown that the Py dimer of Gi/0 can activate a number of 

enzymes, including PLC-p (24, 25), PLA2 (26), mitogen-activated protein kinase (27, 28), 

Raf-1 (29), p-adrenergic receptor kinase (30), phosphatidylinositol 3-kinase (31) and 

adenylyl cyclase (32). In fact, in intestinal smooth muscle cells, treatment with SRIF alone 

activates PLC-p3, thereby increasing IP3 levels, [Ca2*]; and contractions through the Py dimer 

of Gi/o (17). Since both phosphatidylinositol 4-phosphate (PI4P) 5-kinase and 

phosphatidylinositol 5-phosphate (PI5P) 4-kinase are involved in the formation of PIP2 from 

PIP (33), the py dimer of G%, may activate one or both enzymes. Although the majority of 

PIP2 in cells is produced from PI4P, we cannot preclude PIP2 synthesis from PI5P pools (34, 

35). Further studies are warranted to determine the interaction between the Py dimer of Gj/0 

and PI4P 5-kinase or PI5P 4- kinase. 

In summary, we have demonstrated that activation of SRIF receptors, which are 

coupled to G;/,,, leads to an increase in PIP2 synthesis through the Py dimer of the G-protein. 

The PIP2 generated by SRIF serves as additional substrate for preactivated PLC-p, which 

hydrolyzes PIP2, thereby increasing IP3 levels, [Ca2*]j and insulin release from HIT-T15 cells 

(Fig. 6). This is the first report regarding SRIF-induced increase in PIP2 synthesis by 

activation of Gi/o. 
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Fig. 1. Effect of antibodies against GVo subunits on somatostatin (SRIF)-induced 

increase in [Ca**], in the presence of arginine vasopressin (AVP). Antibodies against 

Gp, Giai/Gia2, and G^Goa were diluted 1:100 and microinjected into single cells followed by 

a 30-min incubation period and Ca2* image analysis. 100 nM SRIF was given 100 s 

following administration of AVP (1 nM). Values are mean ± S.E.M.; n=10 cells/treatment. 

•P < 0.05 compared to SRIF controls. 
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Fig. 2. Effect of PIP2 microinjection on [Ca**], in the presence of AVP. Administration of 

PIP2 (1.5-50 amol) into single cells increased [Ca23 in a concentration-dependent manner 

after 100 s of AVP (1 nM). Control cells received intracellular buffer alone after AVP. 

Values are mean ± S.E.M.; n=3 cells/PIP2 concentration. 
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Fig. 3. Time course for PIP2 synthesis from PIP by SRIF In the presence of AVP. PIP2 

and PIP formation by SRIF after treatment of HIT-T15 cells with AVP, as determined by thin 

layer chromatography. SRIF (100 nM) was given 100 s after AVP (1 nM) and experiments 

terminated at the respective time. Values are mean ± S.E.M.; n=3. *P < 0.05 compared to 0 

s. 
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Fig. 4. SRIF-induced increase in PIP2 synthesis in the presence and absence of AVP. 

PIP2 (A) and PIP (B) formation after exposure to different treatments. SRIF (100 nM) was 

given 100 s after AVP (1 nM) and experiments terminated at 8 s of SRIF treatment. Values 

are mean ± S.E.M.; n=4. *P < 0.05 compared to basal controls. 
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Fig. 5. IP, synthesis by SRIF in the presence and absence of AVP. A) Time course of 

AVP-SRIF induced increase in IP3 formation, as determined by ion-exchange 

chromatography. SRIF (100 nM) was given 100 s after AVP (1 nM) and experiments 

terminated at the respective time; *P < 0.05 compared to 0 s (n=3). B) Measurement of IP3 

formation after exposure to different treatments. SRIF (100 nM) was given 100 s after AVP 

(1 nM) and experiments terminated at 12 s of SRIF treatment; *P < 0.05 compared to basal 

controls (n=4). Values are mean ± S.E.M. 
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Fig. 6. Summary of SRIF-AVP cross-talk in stimulation of insulin release from HIT-T15 

cells. Activation of the G -̂coupled receptor by SRIF increases PIP2 synthesis from PIP 

through the py dimer of the G-protein. The PIP2 generated serves as additional substrate for 

preactivated PLC-p by AVP, which increases IP3 levels and [Ca2*]i leading to insulin release. 

ER: endoplasmic reticulum. 
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CHAPTER V GENERAL DISCUSSION 

The major points pertaining to the findings obtained in this dissertation have already 

been discussed in the Discussion section of each chapter. An outline of the major 

conclusions derived from the study and some speculative ideas on further details of the 

mechanism of insulin release by somatostatin (SRIF) are as follow: 

Regulation of [Ca**], and insulin release by SRIF 

Ca2* signaling is an important step for hormone exocytosis from endocrine cells. The 

role of Ca2* in insulin release from p-cells has been demonstrated by several investigators 

(Henquin et al., 1998; Qian and Kennedy, 2001; Wollheim and Pozzan, 1984). To date, 

reports on the effects of SRIF on [Ca2*]; and insulin release have been all inhibitory. For the 

first time, we describe a stimulatory effect of SRIF on [Ca2*} and insulin release in p-cells. 

This effect requires the presence of a Gq agonist such as AVP, and is mediated through 

Gi/Go, the PLC pathway and mainly Ca2* release from the ER. The SRIF-induced increase 

in [Ca2*]i and insulin release was characterized by a sharp and transient increase followed 

by a rapid decline to the sub-basal level. Investigation of the Ca2* sources revealed that the 

ER Ca2* is the main source for the responses to SRIF, since treatment with TG, which 

depletes Ca2* stores from the ER, abolished this effect. Under Ca2*-free condition, SRIF 

maintained its ability to increase [Ca2*];, although the magnitude was lower compared to 

Ca2*-containing condition. Receptor-activated Ca2* mobilization through the IP3 cascade 

can involve two phases: 1 ) Ca2* release from the ER, and 2) Ca2* influx from the 

extracellular space (Putney, 1987). Mobilization of Ca2* from intracellular stores by IP3 

promotes Ca2* influx through the opening of Ca2* channels present on the plasma 

membrane (Icrac) (Voets et al., 2001 ). It is likely that Icrac is involved in the increases in 

[Ca2*]; by SRIF. 

In addition, a sharp decrease in [Ca2*]; to the sub-basal level followed its peak. An 

increase in mitochondrial Ca2* uptake is triggered by IP3-induced Ca2* release (Collins et al., 

2001 ). The rate of Ca2* uptake by the mitochondria is greatly increased when [Ca2*]; 

reaches - 400 nM, which is similar to the increases obtained with SRIF in our study. An 

alternative mechanism of Ca2* redistribution is by efflux to the extracellular space through 

ATP-dependent Ca2* pumps present on the plasma membrane (Sorin et al., 1997). In the 
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present study, pretreatment of HIT-T15 cells with inhibitors of ATP-dependent Ca2* pumps 

did not alter the sharp decrease in [Ca2*];, suggesting that Ca2* uptake by the mitochondria 

maybe responsible for the Ca2* redistribution. Another explanation for this transient 

increase may be attributable to the transient increase in IP3 formation. 

Phosphorylation leading to desensitization and conformational changes 

Exposure of GPCRs to agonists often results in a rapid attenuation of receptor 

responsiveness. The time frame over which these processes occur range from seconds 

(phosphorylation) to minutes (endocytosis) and hours (down-regulation). Studies have 

shown that GPCRs and PLC isozymes can serve as substrates for PKA, PKC, and G-

protein-coupled receptor kinase phosphorylation during desensitization (Budd et al., 2000; 

Francesconi and Duvoisin, 2000; Pitcher et al., 1998). Phosphorylation of the V1b receptor 

and PLC-p by PKC after receptor activation occurs during desensitization (Aiyar et al., 1990; 

Bimbaumer et al., 1992; Innamorati et al., 1998). This event accounts in part for the 

reduction in the responsiveness of cells to further stimulation by AVP. 

The ability of SRIF to increase [Ca2*]; even after 60 min of AVP treatment suggest 

that desensitization of the V1b receptor and PLC-P may not be apparent during stimulation 

with a small concentration of AVP (1 nM). Activation of the V1b receptor coupled to Gq, 

leads to PLC-p activation (Thibonnier et al., 1993), which utilizes PIP2 as a substrate to 

generate IP3 and DAG (Berridge, 1993). Although there are no reports on conformational 

changes for PLC-p during desensitization, phosphorylation of PLC-y leads to conformational 

changes of this isozyme (Smith et al., 2001). Such structural changes could mask the PIP2 

binding sites for additional substrate generated by SRIF. Several PlP r̂egulated actin-

binding proteins and PLC isozymes, including PLC-p posses a basic amino acid motif 

(KxxxKxKK, x = any amino acid), that represents the PlP^binding site commonly present in 

these proteins (Simoes et al., 1995). In our system, the absence of desensitization of PLC-p 

after activation of the V1b receptor may leave the PIP2-binding sites exposed to PIP2 

generated by SRIF, and this would explain why SRIF can increase [Ca2*]; even after 60 min 

of AVP treatment. Future work on structural analysis of PLC-p may provide insights to the 

conformational changes and exposure of the binding sites during preactivation by AVP. 
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SRIF receptors and insulin release 

The effects of SRIF are mediated through the seven-transmembrane receptor family 

that signals via Gi/Go. Five distinct SRIF receptors have been characterized and 

designated as SSTR1-5, where two splice variants of the SSTR2 exists, SSTR2a and 

SSTR2b (Bruno et al., 1992; Patel et al., 1994; Reisine and Bell, 1995). Studies utilizing 

rabbit polyclonal antibodies against the human SSTR1-5 and double-label confocal 

fluorescence immunocytochemistry have demonstrated that all five subtypes are variably 

expressed in human pancreatic islets, where SSTR1 and SSTR5 are dominant in (3-cells 

(Kumar et al., 1999). In both human and rat (3-cells SSTR5 mediate the inhibitory effects of 

SRIF (Mitra et al., 1999). However, the receptor subtype that mediates the SRIF effects in 

HIT-T15 cells remains unknown. We characterized the SRIF receptor subtype that mediates 

the increase in [Ca2*]j leading to insulin secretion using subtype-selective agonists for 

SSTR1-5 and PRL-2903, a specific SSTR2 antagonist. Our results strongly suggest that 

SSTR2 be involved in the SRIF-induced increase in [Ca2*}. 

SSTR5 is responsible for the inhibitory effects of SRIF on insulin release in rats, mice, 

and humans (Mitra et al., 1999; Strowski et al., 2002). Since HIT-T15 cells are derived from 

hamster, there is a possibility that another SRIF receptor subtype, possibly the SSTR2, may 

mediate the inhibitory effects of SRIF in this cell line. Our recent findings demonstrated that 

both SRIF and L-779,976, but not other SSTR agonist inhibited KCI-induced increase in insulin 

release, suggesting that SSTR2 mediates both inhibitory and stimulatory effects of SRIF 

(unpublished results). A cross-talk between the G-protein system coupled to the Vib receptor 

and the SSTR2 may account for the differences between inhibition and stimulation of insulin 

release by SRIF. 

Cross-talk between Gq and Gi/Go 

Reports of cross-talk between Gq- and Gi/Go-coupled receptors have been 

described in different cell types (Quitterer and Lohse, 1999; Selbie et al., 1997; Yeo et al., 

2001). This particular mode of intracellular signaling has been suggested to be a way 

through which a G-protein system can be amplified. We demonstrated that SRIF, which is 

coupled to Gi/Go can increase [Ca2*} leading to insulin release after activation of the Gq-

coupled V1b receptor. SRIF alone failed to increase [Ca2*} and insulin release. This cross
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talk is specific to Gq- and Gi/Go-coupled receptors, although not limited to the AVP and 

SRIF receptors, since in the presence of BK, another Gq-coupled receptor agonist, SRIF 

increased [Ca2*],. In the presence of AVP, medetomidine, an ̂ adrenergic receptor agonist 

that stimulates Gi/Go, also increased [Ca2*];. In contrast, activation of Gs with isoproterenol, 

a non-specific (3-adrenergic receptor agonist, or Gi/Go with medetomidine prior to SRIF, did 

not induce an increase in [Ca2*]; by SRIF. 

During cross-talk with Gq, activation of Gi/Go-coupled receptors often leads to 

increases in inositol phosphate formation and [Ca2*]; (Quitterer and Lohse, 1999; Selbie et 

al., 1997; Yeo et al., 2001 ). Studies suggest that enhancement of Gq signals by Gi/Go is 

through activation of PLC-p (Chan et al., 2000) or interaction with a step after PLC activation 

(Yeo et al., 2001), but none of them have attributed the effect of Gi/Go to a step before PLC 

activation. We demonstrated that SRIF increased [Ca2*]; and insulin release by stimulating 

PIP2 synthesis through the Py dimer of Gi/Go. The PIP2 generated by SRIF serves as 

additional substrate for preactivated PLC-p, which hydrolyzes PIP2, thereby increasing IP3 

levels, [Ca2*]; and insulin release from HIT-T15 cells. It is likely that the Py dimer activates 

PI4P 5- and/or PI5P 4-kinase. These enzymes are responsible for the synthesis of PIP2 

from PIP (Rameh et al., 1997). Although the majority of PIP2 in cells is produced from PI4P 

(Hawkins et al., 1992; Stephens et al., 1991), we cannot preclude PIP2 synthesis from PI5P 

pools. Activation of other kinases by the Py dimer of Gi/Go such as mitogen-activated 

protein kinase (Hedin et al., 1999; Koch et al., 1994), phosphatidylinositol 3-kinase (Lopez-

llasaca et al., 1998) and p-adrenergic receptor kinase (Goldman et al., 1997) has been 

reported. In addition to the PIP2 hydrolysis by PLC-p, there are two possible mechanisms 

involved in the PIP2 metabolism: 1) phosphorylation by phosphatidylinositol 3-kinase to PIP3, 

and 2) dephosphorylation by 5-phosphatase to PIP. 

Hydrolysis of PIP2 by PLC-p increases IP3 formation. In the presence of AVP, SRIF 

induced a transient increase in IP3 formation, which peaked at 12 s of SRIF treatment and 

returned to basal level within 20 s. Metabolism of IP3 can occur by two pathways: 1 ) 

dephosphorylation by inositol polyphosphate 5-phosphatase to IP2, and 2) phosphorylation 

by phosphatidylinositol 3-kinase to IP4. The increases in PIP2, IP3, [Ca2*];, and insulin 

release by SRIF are all characterized by transient patterns. In a preliminary study, treatment 

with LY-294002, a phosphatidylinositol 3-kinase inhibitor did not alter the SRIF-induced 

sharp decline in [Ca2*]; (unpublished results). It is possible that dephosphorylation of IP3to 
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IP2 by the 5-phosphatase is mainly responsible for its transient increase, although we cannot 

rule out the possibility of conversion of IP3 to IP*. An increase in 5-phosphatase activity 

occurs in Xenopus laevis simultaneously to the increase in IP3 formation (Sims and 

Allbritton, 1998). 

Since this is the first report of cross-talk between Gq and Gi/Go in an endocrine cell, 

it is tempting to speculate that a dual-mode of insulin regulation by SRIF exists in p-cells. 

One in which insulin release is inhibited by SRIF during exposure of P-cells to 

secretagogues. In the presence of hormones such as AVP (Gq agonists), activation of SRIF 

receptors would stimulate insulin release. The differences between inhibition and 

stimulation of insulin release would depend on the presence or absence of a particular 

hormone that p-cells being exposed to. This cross-talk mechanism may represent another 

way through which a particular G-protein system can be amplified. 

Physiological significance of insulin release by SRIF 

Insulin is the most important regulator of elevated blood glucose levels. At the same 

time, glucose is the major stimulus for insulin release from p-cells. One possible mechanism 

by which glucose stimulates insulin release is by uptake into p-cells via GLUT2, where it is 

phosphorylated by glucokinases to glucose 6-phosphate. Glucose 6-phosphate undergoes 

glycolysis to generate ATP, closing ATP-sensitive K* channels leading to depolarization and 

opening of Ca2* channels. An increase in [Ca2*} promotes insulin release into the blood 

stream (Ashchroft et al., 1984). Insulin exerts its action mainly by promoting glucose uptake 

into muscles, adipose tissue and liver, where it is stored in form of glycogen. Glucose-

stimulated insulin secretion is biphasic, comprising a rapid first phase lasting 5-10 min, 

followed by a prolonged second phase, that continues for the duration of the stimulus. The 

shape of the glucose-response curve is determined by the activity of the glucokinase, which 

dictates the rate-limiting step for glucose metabolism (Van Schaftingen, 1994). 

A second mode of insulin release is in a pulsatile manner, where insulin is released 

in transient bursts with shorter duration than the biphasic pattern described for glucose 

(Gilon et al., 2002; Song et al., 2002). The mechanisms driving the pulsatility of insulin 

release are still unclear, but an transient increase in [Ca2* ], is required for such a pattern 

(Gilon et al., 2002). It is possible that SRIF may be involved in this mechanism, since 

transient increases in [Ca2* ]; and insulin release are observed upon activation of SRIF 
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receptors in HIT-T15 cells during cross-talk with Gq. All studies describing the inhibitory 

effects of SRIF on insulin release have been done in the absence of Gq agonists (Hsu et al., 

1991; Strowski et al., 2000; Ullrich et al., 1990), which does not preclude the interaction 

between signals generated by Gq and Gi/Go, since under physiological conditions p-cells 

can simultaneously be exposed to hormones such as AVP and SRIF. 

Diabetes mellitus is characterized by chronic hyperglycemia and can be divided into 

type 1 (insulin-dependent) and type 2 (non-insulin-dependent). In the type 1, insulin 

deficiency is more severe and acute, involves significant weight loss and spontaneous 

ketosis can occur. The type 2 is characterized by a combination of insulin resistance and 

deficiency, whereas insulin deficiency is less severe than in the type 1 and blood insulin 

levels remain high enough to prevent excessive lipolysis and spontaneous ketosis. The 

type 2 is present in patients that normally do not require insulin treatment to remain alive, 

although up to 20 % are treated with insulin to control blood glucose levels. Treatment of 

diabetic patients with insulin infusions in a pulsatile rather than continuous manner has been 

shown to be beneficial due to its ability to prevent insulin resistance by demonstrating a 

greater hypoglycemic effect (Gilon et al., 2002). The observation that type 2 patients have 

impaired pulsatile insulin release (O'Rahilly et al., 1988; Porksen et al., 2002) suggest that 

absence of this mode of release contributes to the disease. The transient increases in 

[Ca2*]i leading to insulin release by SRIF during cross-talk with Gq-coupled receptors may 

contribute to the pulsatile pattern of insulin release, which in turn may play a role in the 

prevention of diabetes type 2. 
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the MP data to estimate the MVR that was then compared with the literature (MWPS, 1990) 

recommendation. They found that the literature MVR was 165 to 557% and 20 to 49% higher 

than their study during the first week and the rest of the brooding period, respectively. Such 

comparisons have not been made for pullets and layers. 

The objectives of this paper were to demonstrate the use of the newly collected HP 

and MP data by Chepete and Xin (2002a) in designing the ventilation rate for 37-week-old 

W-36 layers under selected environmental and housing conditions representative of those in 

Iowa; to compare the results with those derived from literature values; and finally to 

delineate the effects of reduced stocking density on the ventilation graphs, particularly 

balance temperature (i.e., outside temperature at or below which supplemental heat would be 

required to maintain the desired indoor conditions) or supplemental heat need. 

MATERIALS AND METHODS 

Ventilation for Moisture Control 

The selected environmental conditions consisted of outside temperature (to) ranging 

from -25 to 10°C, at 5°C increments. The inside temperature (t;) was 15,20 or 25°C. The 

outside relative humidity (RHo) ranged from 20 to 70%, at 10% increments. The inside 

relative humidity (RHO was 50,60, or 70%. 

The MVR was calculated as: 

MVR = p-(Wi -W.) 1000 

The new MP data was obtained from Chepete and Xin (2002a) (for W-36 hens) while 

the 'old' data was obtained from Albright (1990) (for White leghorn hens) and Riskowski et 

al. (1978) (for W-36 hens). Specific sensible heat (SH) and MP data from the bird only (bird 
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MP) was obtained from Chepete and Xin (2002a) and Riskowski et al. (1978) while that from 

the birds and surroundings (room MP) was obtained from Chepete and Xin (2002a) and 

Albright (1990). The room data from Albright (1990) represent data that are currently used in 

the ASAE standards and can be compared with the new data by Chepete and Xin (2002a). 

The bird data from Chepete and Xin (2002a) and Riskowski et al. (1978) would demonstrate 

how the use of bird values would impact the ventilation rate as compared to the use of room 

values. 

The air density, p, based on T0, was calculated as the inverse of specific volume (v) of 

moist air, calculated as: 

(Albright, 1990) [2, 
l + W 

The humidity ratio (W) for the inside or outside air was calculated as: 

Pw W = 0.62198 (Weiss, 1977) [3] 
Pa-Pw_ 

The partial vapor pressure (Pw) of the inside or outside air was calculated as: 

Pw = RH x Pws [4] 

The saturation vapor pressure of the inlet or outlet air (Pws), a function of dry bulb 

temperature, (T*) was calculated as such: 

Pws(T) = e[ci/T*c2+c3 T+c4 T2+c5 T3*c6 T4*c7 to(T)J (ASHRAE, 2001) [5] 

For -100 < T» < 0 °C, the constants are: 

CL = -5.6745359 E+03, C2 = 6.3925247 E+00, C3 = -9.677843 E-03, 

C4 = 0.622157 E-06, C$ = 2.0747825 E-09, C6 = -0.9484024 E-12 



www.manaraa.com

117 

C7 = 4.1635019 E+00. 

For 0 < Tab 5 200 °C, the constants are: 

C, = -5.8002206 E+03, C2 = 1.3914993 E+00, C3 = -4.8640239 E-02, 

C4 = 4.1764768 E-05, C5 = -1.4452093 E-08, C6 = 0.0, 

C7 = 6.5459673 E+00. 

A convenient look-up table of ventilation rates under the different conditions was 

prepared based on the new MP obtained from Chepete and Xin (2002a). 

Ventilation for Temperature Control 

In calculating the ventilation rates for temperature control, contributions of solar 

heat and heat from lights were ignored and the design was for the typical condition where 

only animal heat is available to warm the air. The energy balance is: 

^ SH-(£UA + FPXt,-0 

" m p  1 0 0 6 - p { t , - t 0 )  
[6] 

Atypical 

commercial high-rise layer 

house (fig. 1) located in Iowa, 

having dimensions 131.1m L 

X 14.6m W X 2.3m H (430' 

Lx 48' Wx 7.5' H) with a flat 

ceiling, was considered. The 

house has a nominal holding 
Figure 1. A schematic representation of cross-section of a 

high-rise layer house with uegative pressure ventilation 

and continuous slot ceiling inlets. 



www.manaraa.com

118 

capacity of 84,000 birds. The new SH data was obtained from Chepete and Xin (2002a) (W-

36) while the 'old' data was obtained from Albright (1990) (White leghorn) and Riskowski et 

al. (1978) (W-36). The inside and outside of the walls and ceiling were covered with 20 

gauge tin. The walls were insulated with 0.152 m (6") of fiberglass batt while the ceiling was 

insulated with 0.303 m (12") of blown-in cellulose. The six walkways were made of 0.019 m 

(0.75") plywood. The five cage rows had 0.203 m (8") wide opening underneath to allow 

manure to fall into the storage below. The SUA term consisted of contributions from the 

walls, ceiling and the floor. The perimeter factor (FP) was zero because of the high-rise 

nature of the house. The % and to were as previously mentioned. A temperature differential of 

5°C between the inside of the house and manure storage space was used as field 

measurement (Xin, 2002). The air density, p, was based on the outside air conditions and was 

derived from equation [2]. 

Ventilation curves relating ventilation rate and outside temperature were then 

generated for both temperature and moisture control under environmental conditions earlier 

mentioned. Currently, most birds are housed at 0.0355 m'/bird (55 in2/bird). Due to animal 

welfare concerns, a 31% increase in floor space (0.04645 m2/bird or 72 in'/bird), has been 

recommended. This implies a 31% reduction in the total number of birds per house and its 

effect on ventilation and heating requirement is investigated in this paper. 
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RESULTS AND DISCUSSIONS 

Ventilation Rate Look-up Table 

Table 1 shows the ventilation rate or MVR for the 37-week old W-36 birds under 

different environmental conditions. Higher ventilation rates are associated with lower tj and 

RHi and the opposite is true. 

From table 1, it is evident that changes in RH, directly affect the MVR. For example, 

an increase in RH-, from 50 to 60% reduced the MVR by 17 to 61% across the different 

environmental conditions examined. Similarly, when RH was increased from 60 to 70%, the 

MVR was reduced by 15 to 38%. When RH; was increased from 50 to 60%, Xin et al. (1998) 

reported a MVR reduction of 50 to 60% across t; of 21 to 29 °C, to of -23 to 10°C, and RHo of 

20 to 90% on torn turkeys during brooding-growing period. As such, a temporary increase in 

RH; would reduce heating and electricity costs on fan operation. However, Xin et al. (1998) 

cautioned that such practice should be done very carefully as it may result in ammonia build

up, excessive litter moisture and disease problems. 

At cold to, RHo had little effect on MVR. For example, at to of -5 to -25°C, the MVR 

values for RH@ of 20 to 70% are within 5% of each other. Xin et al. (1998) reported a 10% 

variation in MVR fort* of-15 to -23°C and RH0 of 20 to 90% and they attributed this finding 

to compliance with thermodynamic properties of air, where, as the air becomes colder its 

moisture content approaches similarity regardless of RH level. 

The MWPS (1990) recommends a value of 0.1 cfin/lb or 0.375 m3/(h-kg) being the 

cold weather ventilation rate for layers. Based on this recommended MVR, the MVR based 

on the new MP data would be 0.56 m3/(h-bird) (0.33 cfin/bird). On the other hand, the 
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ventilation rate would be 0.68 m7(h-bird) (0.40 cfin/bird). This suggests a 22% over 

ventilation for modem birds when the MWPS (1990) data are used. The MP data in the 

MWPS (1990) were based on the 'old' data, as reported in a literature review by Chepete and 

Xin (2002b), where a significant quantity of the moisture came from wasted drinking water. 

The MWPS did not define the environmental conditions that constitute a cold weather' 

condition and this may leave room for a wide range of assumptions when designing the 

MVR. A very convenient look-up table (table 1) provides more information and offers a 

solution to this discrepancy. 

Similar calculations to generate MVR for other birds of different ages can be made by 

using the relevant MP data. 

Ventilation Graphs 

The ventilation graphs for temperature and moisture control under different 

environmental conditions are shown in figures 2 through 13. Figures 2 through 7 are based 

on a total of 84,000 birds per house while figures 8 through 13 are based on a total of 57, 960 

birds per house, a 31% reduction. In order to make comparisons between the graphs, specific 

SH and MP data from different literature sources, namely, Chepete and Xin (2002a), Albright 

(1990), and Riskowski et al. (1978), were used. The ventilation rate calculations for both 

temperature and moisture control were based on bird mass of 1.5 kg. 

In all figures, ventilation rate for temperature control derived from room SH data by 

Albright (1990) was 10% higher than that derived from room SH data by Chepete and Xin 

(2002a). This may be due to the higher room SH reported by Albright (1990) as compared to 

that reported by Chepete and Xin (2002a). Specifically, specific room SH was 4.02 W/kg for 

Albright (1990) and 3.70 W/kg for Chepete and Xin (2002a). The ventilation rate derived 
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from bird SH data by Riskowski et al. (1978) was 5% higher than that derived from bird SH 

data by Chepete and Xin (2002a). The bird SH used in the case of Riskowski et al. (1978) 

was 4.40 W/kg while that from Chepete and Xin (2002a) was 4.20 W/kg. The use of bird SH 

in ventilation rate design resulted in higher ventilation rate than when room values were 

used. 

The ventilation rate for moisture control based on room MP data by Chepete and Xin 

(2002a) was 22% higher than that based on room MP data by Albright (1990). The MP of the 

room was 4.85 g/(h kg) or 7.28 g/(hbird) and 3.7 g/(h-kg) or 5.55 g/(h-bird) for Chepete and 

Xin (2002a) and for Albright (1990), respectively. The higher room MP for Chepete and Xin 

(2002a) may have caused higher ventilation rate when compared to that for Albright (1990). 

On the other hand, the moisture control curves based on bird MP data by Chepete and Xin 

(2002a) was 134% higher than that derived from bird MP data by Riskowski et al. (1978). 

The bird MP used in the case of Chepete and Xin (2002a) was 4.11 g/(h kg) or 6.17 

g/(h bird) and was 1.76 g/(h kg) or 2.64 g/(h-bird) for Riskowski et al. (1978). The lower bird 

MP value for Riskowski et al. (1978) may have caused the associated ventilation rate to 

remain consistently low. 

Typically, for a poultry house, the room SH and MP data should be used in 

ventilation rate design because they take into account the effects of moisture evaporation 

from feces and surroundings. Lower ventilation rates result when bird values are used. For 

example, based on room SH and MP data by Chepete and Xin (2002a), the balance point 

ventilation rate was 2100 m3/(h-1000hd) (1236 cfin/lOOOhd) while that based on the 

corresponding bird values was 1200 mVQvlOOOhd) (706 cfin/1000hd) (fig. 2). Thus, the use 

of bird values underestimated the balance point ventilation rate by 75%. 
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Effect of increasing RH-, on ventilation rate while holding t, constant. The 

ventilation rate and balance temperature were reduced as RH; was increased. For example, at 

15°C room temperature, the balance point ventilation rate or ideal ventilation rate based on 

room SH and MP for Chepete and Xin (2002a) reduced from 2100 to 800 m3/(h-1000hd) 

(1236 to 471 cfm/lOOOhd) while that by Albright (1990) reduced from 1200 to 600 

m7(h-1000hd) (706 to 353 cfm/1000hd) when RH; was increased from 50% (fig. 2) to 70% 

(fig. 3). The balance temperature was correspondingly reduced from 8 to -1.5°C, and from 

3.5 to -10°C. This agrees well with psychrometric principles (ASHRAE, 2001) that to keep 

the same temperature in the room while increasing the room RH, colder air should be brought 

in so as to avoid high room temperature buildup. Air with higher moisture content holds 

more heat energy than drier one. The MWPS (1990) specifies a minimum t; of 12.8°C (55F) 

and RH; of 50 to 70%. 

Similar observations and arguments can be made for other pairs of graphs, namely 

figures 4 vs. 5; 6 vs 7; 8 vs. 9; 10 vs. 11; and 12 vs. 13. The relative magnitudes of the values 

would be different between the pairs as different environmental conditions are considered. 

Effect of increasing U on ventilation rate while holding RHi constant. In order to 

illustrate the effect of increasing t; on ventilation rate while holding RH; constant, 

comparisons may be made between figures 2,4, and 6 at RH; of 50% and 100% stocking 

capacity, figures 3, 5, and 7 at RHi of 70% and 100% stocking capacity; figures 8,10, and 12 

at RH; of 50% and 69% stocking capacity, and figures 9,11, and 13 at RH; of 70% and 69% 

stocking capacity. 

At RHi of 50% (figures 2,4,6, 8,10, and 12), increasing the room temperature from 

15 to 25°C resulted in reduction in the ventilation rate. This is logical because in order to 
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maintain higher room temperature, the ventilation rate should be reduced in order to 

minimize sensible heat loss via exhaust air. The greater reduction in moisture control-MVR 

as a result of maintaining the constant RHi at a higher t; led to a lower balance temperature. 

Different data used gave different ventilation rates. For example, considering the 

ventilation curves for moisture and temperature control derived from room SH and MP data 

by Chepete and Xin (2002a) and Albright (1990), the ventilation rates at the balance point 

were 2100 vs. 1200 m3/(h-1000hd) (1236 vs. 706 cfm/lOOOhd), respectively (fig. 2). This 

may be a result of modern birds producing lesser SH and more moisture than birds reared 

several years ago as indicated by comparison of room SH and MP reported by Chepete and 

Xin (2002a) and Albright (1990). The corresponding balance point ventilation rate for 20 and 

25°C (figures 4 and 6, respectively) were 940 vs. 600 m7(h-1000hd) (553 vs. 353 

cfm/lOOOhd) and 520 vs. 360 m3/(h-1000hd) (306 vs. 212 cfin/lOOOhd), respectively. 

The balance point ventilation rate based on bird SH and MP data by Chepete and Xin 

(2002a) was 1200,630, and 350 m3/(h-1000hd) (706, 371, and 206 cfin/1000hd) at 

corresponding temperatures of 15,20, and 25°C and 50% RH (fig. 2,4, and 6, respectively). 

Ventilation rate for moisture control based on bird MP data by Riskowski et al. (1978) did 

not coincide with the corresponding temperature control curve. This may be caused by the 

low bird MP value that caused the ventilation rate for moisture control to be consistently low. 

For a given to, ventilation for temperature control using room SH and MP data by 

Albright (1990) resulted in higher ventilation rate than when the new data by Chepete and 

Yin (2002a) was used. This suggests potential over ventilation for the modern birds when 

using the 'old' data and this may lower RH; and cause dusty conditions that may further 

cause respiratory disorders in the birds (MWPS, 1990). 
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For 70% RH; (figures 3, 5,7,9,11, and 13), similar observations and arguments can 

be made. 

Effect of reducing the stocking capacity by 31% on the ventilation rate. Under 

similar environmental conditions, the only difference observed between figures 2 through 7 

(100% stocking capacity) and figures 8 through 13 (69% stocking capacity) would be due to 

the different bird numbers resulting in lower net sensible heat when the bird capacity was 

reduced. For example, comparing results of figure 2 (100% stocking capacity, 50% RH and 

15°C temperature) vs. figure 8 (69% stocking capacity, 50% RH and 15°C temperature), the 

balance point ventilation rate was 2100 vs. 2300 m3/(h-1000hd) (1236 vs. 1354 cfm/lOOOhd), 

respectively, based on data by Chepete and Xin (2002a), and was 1200 vs. 1300 

m7(h 1000hd) (706 vs. 765 cfm/lOOOhd) based on data by Albright (1990). The 

corresponding balance temperature was 8.0 vs. 9.0°C and 3.2 vs. 4.5°C. Hence, the reduced 

number of birds would have rather insignificant effect on the building supplemental heat 

requirement. This is logical as most of the heat loss is through ventilation pathway that is 

directly related to moisture control MVR. Similar observations and arguments can be made 

by comparing figures 3 vs. 9,4 vs. 10, 5 vs. 11,6 vs. 12, and 7 vs. 13. 

CONCLUSIONS 

The use of the newly collected heat and moisture production (HP and MP) data by 

Chepete and Xin (2002a) in designing the ventilation rate (VR) for 37-week-old W-36 layers 

under selected environmental and housing conditions representative of those in Iowa has 

been demonstrated and the results were compared with those derived from the literature. The 

effects of reduced stocking density on the ventilation graphs, particularly balance 
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temperature or supplemental heat need have been investigated. The following conclusions 

have been drawn: 

• VR derived from the 'old' literature room sensible heat (SH) and MP data was 

10% higher or 18% lower for temperature or moisture control, respectively, 

when compared to that derived from the new data. 

• Correspondingly, the VR derived from the old' literature bird SH and MP 

data was 5% higher or 57% lower. 

• Reducing the bird stocking density by 31% would slightly raise the balance 

temperature (1.0 to 1.3°C), thereby having little influence on supplemental 

heat requirement. 

• Increasing the inside relative humidity (RH) from 50 to 60% or from 60 to 

70% reduced the ventilation rate by 17 to 61% or by 15 to 38%, respectively. 

• Under cold outside temperatures of -5 to -25°C, outside RH had little effect on 

the ventilation rate. 
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NOMENCLATURE 

p = air density, kg/m3 (based on outside air temperature) 

Y or 'o' = inside or outside 

V.emp = ventilation rate for temperature control, m7s 

A = area, m2 

e = base of the natural logarithms, 2.7182818 

F = perimeter beat loss factor, W/(m °C) 

MP = moisture production rate, g/(kg-h) 

MVR = minimum ventilation rate, m7(kg-h) 

P = perimeter, m 

Pa = barometric pressure of ambient air, kPa, assumed to be 101.325 kPa. 

Pw = partial vapor pressure of the inside or outside air, kPa 

Pws = saturation vapor pressure of the inlet or outlet air, kPa 

Ra = dry air gas constant, 287.055 J/(kg-K) 

RH = relative humidity, % 

SH = specific sensible heat production rate, W/kg 

T = absolute dry bulb temperature, K= °C + 273.15 

t = dry bulb temperature, °C 

U = thermal conductance, W/(m2 oC) 

v = specific volume, m7kg 

Wj or W0 = humidity ratio for the inside (exhaust) or outside (fresh) air, kg HiO/kg dry air 
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Table 1. Minimum ventilation rate (m3/(h-1000hd) for moisture control for 37-week old 
W 36 layers with a moisture production rate of 4.85 g/(h kg) and bird mass of 1.48 kg. 

to 
(°C) 

RH. 

(%) 

tj = 15°C tj = 20°C tj = 25°C to 
(°C) 

RH. 

(%) RHi(%) RHi(%) RHj (%) 

to 
(°C) 

RH. 

(%) 
50 60 70 50 60 70 50 60 70 

-25 20 837 695 594 578 479 409 403 334 285 
-20 861 714 609 593 491 419 413 342 292 
-15 890 736 627 610 505 430 424 351 299 
-10 925 762 648 630 520 443 436 360 307 
-5 972 797 675 656 539 458 451 372 316 
0 1038 843 710 689 564 477 469 385 326 
5 1125 903 754 731 594 499 491 401 339 
10 1255 989 815 789 634 529 520 422 354 

-25 30 843 699 596 580 481 410 405 335 286 
-20 871 720 614 597 494 421 415 344 293 
-15 905 746 635 617 510 434 427 353 301 
-10 952 780 661 642 529 449 442 364 310 
-5 1017 827 696 676 553 467 460 378 320 
0 1117 895 746 723 586 493 485 396 334 
5 1260 988 812 786 629 524 516 418 350 
10 1504 1137 914 881 692 569 559 447 372 

-25 40 848 702 599 583 483 412 406 336 286 
-20 880 727 618 601 497 424 417 345 294 
-15 922 757 642 624 515 437 431 356 302 
-10 980 799 674 655 537 455 448 368 312 
-5 1066 859 719 697 567 478 470 385 325 
0 1209 953 786 761 611 510 501 407 342 
5 1432 1091 881 850 670 552 542 435 363 
10 1876 1339 1039 997 761 615 603 475 391 

-25 50 854 706 602 585 485 413 407 337 287 
-20 890 733 623 606 500 426 419 347 295 
-15 938 769 651 632 520 441 435 358 304 
-10 1009 819 688 668 546 461 454 372 315 

5 1121 894 743 720 582 488 481 392 330 
0 1317 1019 830 802 637 528 519 418 350 
5 1659 1218 962 925 716 583 572 454 376 
10 2496 1627 1205 1149 847 670 656 507 413 
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Table 1. (continued) 

t. RHo tj = 15°C tj = 2Q°C tj - 2S°C 

(°C) (%) RH; (%) RHj (%) RHj (%) 
50 60 70 50 60 70 50 60 70 

-25 60 860 710 605 588 486 414 408 338 288 
-20 900 740 628 611 503 428 422 348 296 
-15 956 780 659 640 525 445 438 361 306 
-10 1041 839 703 682 555 468 460 377 318 
-5 1181 932 769 744 598 499 491 399 335 
0 1447 1095 880 849 666 548 538 431 359 
5 1972 1379 1059 1015 768 617 605 475 390 
10 3729 2074 1435 1356 954 735 718 544 437 

-25 70 865 714 608 591 488 416 410 339 288 
-20 910 747 633 615 507 430 424 350 297 
-15 974 792 667 648 531 449 442 363 308 
-10 1074 861 718 696 564 474 467 381 322 
-5 1248 973 797 771 615 511 503 406 340 
0 1605 1183 936 901 698 569 559 444 368 
5 2431 1589 1179 1124 829 656 643 497 405 
10 7383 2863 1773 1654 1093 815 795 586 464 

tg = outside temperature; RH* = outside relative humidity; RH, = inside relative humidity 

t; = inside temperature; Divide the table values (SI unit) by 1.699 to obtain MVR in cfin (m"Vft) 
(IP unit) per 1,000 heads. 
The moisture production (MP) used in the calculation of the minimum ventilation rate was 
calculated from the time-weighted average latent heat production (LHP) rate which included 
the contribution of moisture evaporation from fecal matter MP = LHP*3600/2450 
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Figure 2. Ventilation graph based on outside air for temperature and moisture control at 100% stocking capacity, 

inside temperature of 15*C, inside relative humidity (RH) of 50%, and outside RH of 50%. Bird MP or SHP involve 

moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 
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Figure 3. Ventilation graph based on outside air for temperature and moisture control at 100% stocking capacity, 

inside temperature of 15*C, inside relative humidity (RH) of 70%, and outside RH of 50%. Bird MP or SHP involve 

moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 
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Figure 4. Ventilation graph based on outside air for temperature and moisture control at 100% stocking capacity, 

inside temperature of 20°C, and inside relative humidity (RH) of 50%, and outside RH of 50%. Bird MP or SHP 

involve moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 
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Figure 5. Ventilation graph based on outside air for temperature and moisture control at 100% stocking capacity, 

inside temperature of 20*C, and inside relative humidity (RH) of 70%, and outside RH of 50%. Bird MP or SHP 

involve moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 
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Figure 6. Ventilation graph based on outside air for temperature and moisture control at 100% stocking capacity, 

inside temperature of 25*C, and inside relative humidity (RH) of 50%, and outside RH of 50%. Bird MP or SHP 

involve moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 
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Figure 7. Ventilation graph based on outside air for temperature and moisture control at 100% stocking capacity, 

inside temperature of 25*C, and inside relative humidity (RH) of 70%, and outside RH of 50%. Bird MP or SHP 

involve moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 
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Figure 8. Ventilation graph based on outside air for temperature and moisture control at 69% stocking capacity, 

inside temperature of 15*C, and inside relative humidity (RH) of 50%, and outside RH of 50%. Bird MP or SHP 

involve moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 
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Figure 9. Ventilation graph based on outside air for temperature and moisture control at 69% stocking capacity, 

inside temperature of 15*C, and inside relative humidity (RH) of 70%, and outside RH of 50%. Bird MP or SHP 

involve moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 
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Figure 10. Ventilation graph based on outside air for temperature and moisture control at 69% stocking capacity, 

inside temperature of 20eC, and inside relative humidity (RH) of 50%, and outside RH of 50%. Bird MP or SHP 

involve moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 
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Figure 11. Ventilation graph based on outside air for temperature and moisture control at 69% stocking capacity, 

inside temperature of 20'C, and inside relative humidity (RH) of 70%, and outside RH of 50%. Bird MP or SHP 

involve moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 
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Figure 12. Ventilation graph based on outside air for temperature and moisture control at 69% stocking capacity, 

inside temperature of 25°C, and inside relative humidity (RH) of 50%, and outside RH of 50%. Bird MP or SHP 

involve moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 

1200 

1000 

800 

«00 

I 400 

200 

Temperature control (Chepete S Xin. 2002:W-36 room SHP) 

Temperature control (AIBngnt. 1990:White Leghorn: mom SHP) 

Temperature control (Riskowski et al.. 1978:W-36: Ocra SHP) 

* ** Moisture central (Chepete S Xin. 2002: room MP) 

" Moisture corarcl (AIBngnt. 1990: room MP) 

" Moisture control (Riskowski et al.. 1978:Bird MP) 

Moisture control (Chepete S Xin. 2002: Bird MP) 

—*—Temperature control (Chepete 1 Xin. 2002:W-36: Bird SHP) 

706 

- 588 

• 471 

3S3 ï 

235 

• 118 

-30 •25 -20 10 15 -15 -10 -5 0 5 
Outside temperature (®C) 

Figure 13. Ventilation graph based on outside air for temperature and moisture control at 69% stocking capacity, 

inside temperature of 25*C, and inside relative humidity (RH) of 70%, and outside RH of 50%. Bird MP or SHP 

involve moisture effect from birds only; room MP or SHP involve moisture effect from birds and surroundings. 
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CHAPTER 6. 

GENERAL CONCLUSIONS 

1. An extensive literature review and comparative analysis of heat and moisture 

production (HP, MP) of various poultry types (layers, broilers, and turkeys) and their housing 

systems indicated that total heat production (THP, W/kg) has increased over the years. 

Specifically, their increase amounted to about 21 to 44% over a 14-year period (1968 to 

1982) for broilers weighing 0.1 to 1.6 kg, 15 to 22% for broilers at 1.4 to 1.6 kg over a 32-

year period (1968 to 2000); and 36 to 63% over a 24-year period (1974 to 1998) for torn 

turkeys weighing 0.4 to 1.0 kg. Data for pullets and layers between 7- and 33- wk old at 

thermoneutral environment are not available. The metabolic rate equations derived from the 

literature data were in good agreement with the standard metabolic rate HP (W/bird)= a Mb, 

where b = 0.66 to 0.75. Specifically, it was 8.55 M° 74 (1968) and 10.62 M° 75 (1982 to 2000) 

for broilers; 6.47 M0'77 for pullets and layers (1953 to 1990); 7.54 M°53 (1974 to 1977) and 

9.86 M°77 (1992 to 1998) for turkeys. 

2. HP and MP at bird and room levels of modern pullets (W-36 at 1-5 and 10 weeks 

of age and W-98 at 1-5 weeks of age), laying hens (W-36 at 21, 37, and 64 weeks of age), 

and molting hens (W-36 at 68-75 weeks of age, room level only) were measured using large-

scale indirect calorimeters that mimic commercial production settings. 

Pullets and laying hens. The W-98 and W-36 pullets reached the metabolic peak at 

10 and 14 days of age, respectively. The W-98 pullet produced higher THP than the W-36 

counterpart. Modern pullets showed higher THP (12-37%) than those 20 to 50 years ago. At 

the beginning of egg production, THP of the modem layers was 12% higher than that 
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predicted by the CIGR (1999) model and the difference diminished with time. Evaporation of 

fecal moisture elevated room latent HP (LHP) by 8-38% (light period) or 21-79% (dark 

period) and reduced the room sensible HP (SHP) by 4-17% (light) or 14-33% (dark) with 

reference to bird LHP or SHP. All HP responses were significantly (P<0.05) reduced to 

various degrees (e.g., 23-34% for THP) in the dark as compared to the light period. 

Molting hens. LHP and SHP rates measured were for the room. THP ranged from 4.4 

to 5.6 W/kg, 5.4 to 6.5 W/kg, and 6.7 to 6.9 W/kg during fasting, restricted feeding and post 

molt periods, respectively. LHP ranged from 1.7 to 2.1 W/kg, 1.5 to 2.0 W/kg, and 2.4 to 2.9 

W/kg during the respective periods. The corresponding SHP ranged from 2.6 to 3.5 W/kg, 

3.9 to 4.6 W/kg, and 3.9 to 4.4 W/kg, respectively. The corresponding respiratory quotient 

(RQ) averaged 0.71,0.76, and 0.92, respectively. HP values during the light period were 

significantly higher (P<0.05) than that during the dark period. LHP as a percentage of THP 

ranged from 24 to 43% with no significant differences between the light and dark periods. 

3. The new data for W-36 layers were used in an example of designing the building 

ventilation rates for a modern laying hen house in Iowa. Ventilation graphs were developed 

for a range of outside temperature (to) of -25 to 10°C, at 5°C increments, outside relative 

humidity (RH) of 20 to 70%, and inside RH of 50,60 and 70%. Comparative ventilation 

curves based on literature HP and MP data were also presented. The ventilation rate (VR) 

derived from the 'old' literature room sensible heat (SH) and MP data was 10% higher or 

18% lower for temperature or moisture control, respectively, than that derived from the new 

data. Correspondingly, based on bird SH and MP data, VR derived from the 'old' literature 

data was 5% higher or 57% lower. Reducing the number of birds or stocking density by 31% 

to reflect the new animal welfare guidelines would slightly raise the balance temperature (tbai, 
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1.0 to 1.3°C), thereby having rather negligible influence on the supplemental heat 

requirement of the house. Increasing the room RH from 50 to 60% or from 60 to 70% 

reduced the ventilation rate by 17 to 61% or by 15 to 38%, respectively. 

4. Results of this study provide an updated thermal load database for design and 

operation of poultry housing ventilation systems, as well as bioenergetics information for the 

scientific literature. 
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APPENDIX 1. 

CRIO PROGRAM USED IN THE STUDY 
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Program: 
Flag Usage: 
Input Channel Usage : 
Excitation Channel Usage : 
Control Port Usage: 
Pulse Input Channel Usage : 
Output Array Definitions : 

* l Table l Programs 
01: 2 Sec. Execution Interval 

01: P10 Battery Voltage 
01: 29 Loc [:Bat. Volt] 

02 : P86 Do 
01: 1 Call Subroutine 1 [Temp/RH readings & Heater control] 

03: P86 Do 
01: 2 Call Subroutine 2 [Air sampling control] 

04 : P26 Timer 
01: 30 Loc [:Timer, s ] 

05: P89 If X<=>F 
01: 30 X Loc Timer, s 
02: 4 c 
03: 301 F 
04: 0 Go to end of Program Table 

06 : P86 Do 
01: 3 Call Subroutine 3 [Meter outputs after stabilization] 

07 : P34 Z=X+F 
01: 30 X Loc Timer, s 
02: -359 F 
03: 31 Z Loc : Sample if >0 

08: P89 If X<=>F 
01: 31 X Loc 
02: 3 » 
03: 0 F 
04: 10 Set high Flag 0 (output) 

09 : P78 Resolution 
01: 1 High Resolution 

10 : P77 Real Time 
01: 110 Day,Hour-Minute 

11 : P7l Average 
01: 10 Reps 
02: l Loc Temp#0 
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Page 2 Table 1 

12 : P71 
01: 8 
02: 20 

Average 
Reps 
Loc SLPM#1 

13 : P70 
01: 1 
02: 28 

Sample 
Reps 
Loc Sam. Seq. 

14 : P89 
01: 31 
02: 3 
03: 0 
04: 30 

If X<«>F 
X Loc 
>= 
F 
Then Do 

15 : P26 
01: 0 

Timer 
Reset Timer 

16 : P32 
01: 28 

Z'Z+l 
Z Loc [:Sam. Seq.] 

17 : P89 
01: 28 
02: 3 
03: 5 
04: 30 

If X<=>F 
X Loc Sam. Seq. 
>= 
F 
Then Do 

18: P30 
01: 0 
02: 0 
03: 28 

Z.F 
F 
Exponent of 10 
Z Loc [:Sam. Seq.] 

19 : P95 End 

20 : P95 End 

21: P End Table l 

• 2 Table 2 Programs 
01: 0.0000 Sec. Execution Interval 

01: P End Table 2 

• 3 Table 3 Subroutines 
Temp/RH Measurement and Temp Control 
Temp and RH Measurement 
Heater Control Logic 
Air Sampling Control 
Analyzer and Flowmeter Output 

01: P8S Beginning of Subroutine 
01: 1 Subroutine Number 
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Page 3 Table 3 

02: Pli Temp 107 Probe 
01: 1 Rep 
02: 1 IN Chan 
03: 2 Bxcite all reps w/EXchan 2 
04: 1 Loc [:Temp#0 ] 
05: 1.8 Huit 
06: 32 Offset 

03: Pll Temp 107 Probe 
01: 4 Reps 
02: 2 IN Chan 
03: 2 Bxcite all reps w/BXchan 2 
04: 2 Loc [ :Temp#l ] 
05: 1.8 Mult 
06: 32 Offset 

04: P4 Bxcite,Delay,Vole(SB) 
01: 1 Rep 
02: 25 2500 mV 60 Hz rejection Range 
03: 6 IN Chan 
04: 1 Bxcite all reps w/BXchan 1 
05: 15 Delay (units .Olsec) 
06: 2500 mV Excitation 
07: 6 LOC [:RH#0 ] 
08: 0.1 Mult 
09: 0 Offset 

05: P4 Bxcite,Delay,Volt(SB) 
01: 4 Reps 
02: 25 2500 mV 60 Hz rejection Range 
03: 7 IN Chan 
04: 1 Excite all reps w/BXchan l 
05: 15 Delay (units .Olsec) 
06: 2500 mV Excitation 
07: 7 LOC [:RH#1 ] 
08: 0.1 Mult 
09: 0 Offset 

06: P87 
01: 0 
02: 4 

07: P89 
01: 2--
02: 4 
03: 69.75 
04: 30 

Beginning of Loop 
Delay 
Loop Count 

If x<=>? 
X Loc Temp#l 
< 

P 
Then Do 

08: P30 
01: 1 
02: 0 
03: 11— 

Z«F 
P 
Exponent of 10 
Z Loc [:Heater#l ] 

09 : P95 End 
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Page 4 Table 3 

10: P89 If X<~>F 
01: 11-- X Loc Heater#! 
02: 2 <> 
03: 0 F 
04: 30 Then Do 

11: P89 If X<->F 
01: 2-- X Loc Temp#l 
02: 3 >« 
03: 70 F 
04: 30 Then Do 

12: P30 Z=F 
01: 0 F 
02: 0 Exponent of 10 
03: 11-- Z Loc [:Heater#1 ] 

13 : P95 End 

14 : P94 Else 

15: P30 Z-F 
01: 0 F 
02: 0 Exponent of 10 
03: 11-- Z Loc [:Heater#! ] 

16: P95 End 

17: P95 End 

18 : P104 SDM-CD16 
01: 9 Reps 
02: 0 Address 
03 : li Loc Heater#l 

19 : P9S End 

20: P85 Beginning of Subroutine 
01: 2 Subroutine Number 

21: P89 If X<»F 
01: 28 X Loc Sam. Seq. 
02: 1 
03: 0 F 
04: 30 Then Do 

22: P87 Beginning of Loop 
01: 0 Delay 
02: 5 Loop count 

23 : P30 Z-F 
01: 0 F 
02: 0 Exponent of 10 
03: 15-- Z LOC [:Valve#0 ] 
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Page 5 Table 3 

24 : P95 End 

25: P30 Z-F 
01: 1 F 
02: 0 Exponent of 10 
03: 15 Z Loc [ :Valve#0 ] 

26 : P95 End 

27: P89 If X<=>F 
01: 28 X Loc Sam. Seq. 
02: 1 
03: 1 F 
04: 30 Then Do 

28: P87 Beginning of Loop 
01: 0 Delay 
02: 5 Loop Count 

29 : P30 Z-F 
01: 0 F 
02: 0 Exponent of 10 
03: 15-- Z Loc [:Valve#0 ] 

30: P95 End 

31: P30 Z-F 
01: 1 F 
02: 0 Exponent of 10 
03: 16 Z Loc [:Valve#l ] 

32 : P95 End 

33: P89 If X<->F 
01: 28 X Loc Sam. Seq. 
02: 1 
03: 2 F 
04: 30 Then Do 

34: P87 Beginning of Loop 
01: 0 Delay 
02: 5 Loop Count 

35: P30 Z-F 
01: 0 F 
02: 0 Exponent of 10 
03: 15-- Z Loc [:Valve#0 ] 

36 : P9S End 

37: P30 Z-F 
01: 1 F 
02: 0 Exponent of 10 
03: 17 Z LOC [:Valve#2 ] 
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38: P95 

39: P89 
01: 28 
02: 1 
03: 3 
04: 30 

40: P87 
01: 0 
02: 5 

41: P30 
01: 0 
02: 0 
03: 15-

42: P95 

43: P30 
01: 1 
02:  0  
03: 18 

44 : P95 

45 : P89 
01: 28 
02: 1 
03: 4 
04: 30 

46: P87 
01: 0 
02: 5 

47: P30 
01: 0 
02: 0 
03: 15-

48 : P95 

49: P30 
01: 1 
02: 0 
03: 19 

50 : P95 

51: P104 
01: 9 
02: 0 
03: 11 

End 

If X<»>F 
X Loc Sam. Seq. 

F 
Then Do 

Beginning of Loop 
Delay 
Loop Count 

Z-F 
F 
Exponent of 10 
Z Loc [:Valve*0 

End 

Z-P 
F 
Exponent of 10 
Z Loc [:Valve#3 

End 

If X<=>F 
X Loc Sam. Seq. 

F 
Then Do 

Beginning of Loop 
Delay 
Loop Count 

Z*F 
F 
Exponent of 10 
z Loc [:Valve#o 

End 

Z*F 
F 
Exponent of 10 
Z Loc [:Valve#4 

End 

SDM-CD16 
Reps 
Address 
Loc Heater#l 
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52 : P95 End 

53: P85 Beginning of Subroutine 
01: 3 Subroutine Number 

54 : P86 Do 
01: 44 Set high Port 4 

55: P87 Beginning of Loop 
01: 0 Delay 
02: 8 Loop Count 

56 : P86 Do 
01: 75 Pulse Port 5 

57: P2 Volt (DIP?) 
01: 1 Rep 
02: 25 2500 mV 60 Hz rejection Range 
03: 6 IN Chan 
04: 40— Loc [:F1OW mVl ] 
05: 1 Mult 
06: 0 Offset 

58 : P95 End 

59: P86 Do 
01: 54 Set low Port 4 

60 : P37 Z=X*F 
01: 40 X Loc Flow mVl 
02: 0.6864 F 
03: 32 Z Loc : 

61: P34 Z.X+F 
01: 32 X LOC 
02: -11.537 F 
03: 20 Z Loc [:SLPM#1 ] 

62: P37 Z«X*F 
01: 41 X Loc Flow mV2 
02: 0.6606 F 
03: 33 Z Loc : 

63 : P34 Z-X+F 
01: 33 X LOC 
02: 2.3413 F 
03: 21 Z LOC [:SLPM#2 ] 

64 : P37 Z=X*F 
01: 42 X LOC Flow mV3 
02: 0.6781 F 
03: 34 Z Loc : 
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65 : P34 Z-X+F 
01: 34 X LOC 
02: 3.1816 F 
03: 22 Z LOC [:SLPM#3 ] 

66: P37 Z*X#F 
01: 43 X Loc Flow mV4 
02: 0.6731 F 
03: 35 Z LOC : 

67 : P34 Z»X+F 
01: 35 X Loc 
02: -2.7115 F 
03: 23 Z Loc [:SLPM#4 ] 

68: P37 Z=X*F 
01: 44 X Loc DP mV 
02: 0.0401 F 
03: 36 Z Loc : 

69 : P34 Z=X+F 
01: 36 X Loc 
02: -39.635 F 
03: 24 Z Loc [:Dewpt, C ] 

70: P37 Z*X*F 
01: 45 X Loc C02 mV 
02: 1.2067 F 
03: 48 Z LOC [:C02, int ] 

71 : P34 Z«X+F 
01: 48 X Loc C02, int 
02: -10.897 F 
03: 25 Z Loc [:C02, ppm ] 

72: P37 Z-XF 
01: 46 X LOC 02 mV 
02: 10.104 F 
03: 26 Z LOC [:02, "ppm"] 

73 : P34 Z*X+F 
01: 26 X LOC 02, "ppm" 
02: 832.46 F 
03: 26 Z Loc [:02, "ppm"] 

74: P37 Z=X*F 
01: 47 X Loc [BP, mV] 
02: 0.184 F 
03: 49 Z Loc [:BP, int ] 

75 : P34 Z-X+F 
01: 49 X LOC BP, int 
02: 600 F 
03: 27 Z Loc [:BP, mbar ] 
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76: P95 End 

77: P End Table 3 

A Mode 10 Memory Allocation 
01: 50 Input Locations 
02: 64 Intermediate Locations 
03 : 0.0000 Final Storage Area 2 

C 
01: 0 
0 2 :  0  
03 : 0000 

Mode 12 Security 
LOCK 1 
LOCK 2 
LOCK 3 
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Page 10 Input Location Assignments (with connents) : 

Key: 
T*Table Number 
B*Bntry Number 
L*Location Number 

T: B: L 
3: 2: 1 Loc [:Temp#0 ] 
3: 3: 2 Loc [ :Temp#l ] 
3: 4: 6 Loc [ :RH#0 ] 
3: 5: 7 Loc C :RB#1 ] 
3: 8: 11 Z Loc [:Heater#1 
3: 12: 11 z Loc [:Heater#! 
3: IS: 11 z Loc [:Heater#1 
3: 23: 15 z Loc [:Valve#0 
3: 25: 15 z Loc [:Valve#0 
3: 29: 15 z Loc [:Valve#0 
3: 35: 15 z Loc [:Valve#0 
3: 41: 15 z Loc t:Valve#o 
3: 47: 15 z Loc [:Valve#0 
3: 31: 16 z Loc [:Valve#1 
3: 37: 17 z Loc [ :Valve#2 
3: 43: 18 z Loc [:Valve#3 
3: 49: 19 z Loc [:Valve#4 
3: 61: 20 z Loc [:SLPM#1 
3: 63: 21 z Loc [:SLPM#2 
3: 65: 22 z Loc [:SLPM#3 
3: 67: 23 z Loc [:SLPM#4 
3: 69: 24 z Loc [:Dewpt, C 
3: 71: 25 z Loc [:C02, ppm 
3: 72: 26 z Loc [ :02, "ppm" 
3: 73: 26 z Loc [:02, "ppm" 
3 : 75: 27 z Loc [ :BP, mbar 

16: 28 z Loc [:Sam. Seq. 
18: 28 z Loc [:Sam. Seq. 

1: 1: 29 LOC [ :Bat, Volt] 
1 : 4 : 30 LOC [ :Timer, s ] 

7: 31 z Loc : Sample if 
3: 60: 32 z Loc 
3: 62: 33 z Loc : 
3: 64: 34 z Loc : 
3: 66: 35 z Loc : 
3: 68: 36 z Loc : 
3: 57: 40 Loc [ Flow mVl ] 
3: 70: 48 z Loc [:C02, int 
3: 74: 49 z Loc [:BP, int 
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Page 11 Input Location Labels: 

i:Temp#0 i4:Heater#4 27:BP, mbar 40:Plow mVl 
2:Temp#1 i5:Valve#0 28:Sam. Seq. 41:Plow mV2 
3:Temp#2 16:Valve#! 29:Bat, Volt 42:Flow mV3 
4:Temp#3 17:Valve#2 30:Timer, s 43:Plow mV4 
5:Temp#4 18:Valve#3 31: 44:DP mV 
6:RH#0 19:Valve#4 32: 45:C02 mV 
7:RH#1 20 :SLPM#1 33: 46:02 mV 
8:RH#2 21:SLPM#2 34: 47: 
9:RH#3 22:SLPM#3 35: 48:C02, int 
10:RH#4 23:SLPM#4 36: 49:BP, int 
11:Heater#! 24:Dewpt, C 37: 50: 
12:Heater#2 25:C02, ppm 38: 51: 
13 :Heater#3 26:02, "ppm" 39: 52: 
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APPENDIX 2. 

LINEAR FUNCTIONS OBTAINED FROM CALIBRATION OF 

INSTRUMENTS 
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1. Mass flow meters (SLPM = standard liter per minute) 

750 

chamber 1: SLPM = 0.6864mV -11.537 
700 

chamber Z SLPM - 0.6606mV * 2.3413 

chamber 3: SLPM * 0.67S1mV • 3.1816 650 
—x—chamber 4: SLPM = 0.6731mV-Z711S 

600 

m 550 i 

500 

Z 450 X 

400 

350 

300 
500 600 700 800 900 1000 1100 

Voltage (mV) 

Mass flow as a function of voltage for the four calorimeter chambers. R2 = 1 for all 

functions. 
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2. Oxygen analyzer 

16000 

14000 

12000 ~ 

10000 L 

i 8000 --
delta ppm = 10.104mV + 832.46 

R2 = 1 
6000 

4000 --

2000 --

1400 600 800 1000 1200 200 400 

Voltage (mV) 

Delta ppm as a function of voltage for the paramagnetic oxygen analyzer 
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3. Carbon dioxide analyzer 

2500 

2000 

e 1500 

§ 1000 
ppm = 1.2067m V • 10.897 

500 

600 800 200 400 1000 1200 1400 1600 1800 0 

Voltage (mV) 

Carbon dioxide concentration (COz, ppm) as a function of voltage for the CO2 analyzer 
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4. Dew point hygrometer 

24.0 -

23.8 

23.6 

P 23.4 

23.2 

Temp = 0.0405mV - 40.171 = 22.8 

22.6 

22.4 

22.2 

22.0 
1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 

Voltage (mV) 

Dew point temperature as a function of voltage for the dew point hygrometer 
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APPENDIX 3 

DYNAMIC BEHAVIOR OF DAILY CALIBRATION OF THE OXYGEN 

AND CARBON DIOXIDE GAS ANALYZERS DURING THE COURSE 

OF SOME TRIALS 
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1. Oxygen analyzer 

0.06 21.000 

0.05 I ...| 20.975 

0.04 : 

-j 20.925 J 

4 20.900 g 

Zero Calibration 
Spin before calibration 

Zero alter calibration 

Span after calibration 
= 0.03 

g 0.02 

9 o.oi 20.875 

in 
1 20.850 o.oo 

I 20.825 •0.01 

1 20.800 
11-Oct 21-Oct 31-Oct 10-Nev 20-Nov 30-Nov 10-Dec 

-0.02 
11-Sep 21-Sep 1-Oct 

Dei» 

Behavior of the oxygen (O2) analyzer during zero (99.999% nitrogen) and span (20.98% 

oxygen) gas calibrations during the course of experiments. The expected readings after 

zero and span gas calibrations were 0 and 20.89%, respectively. 
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Oxygen analyzer 

o Before Cal - After Cal 
20... 

IB •-

1 6  • • •  

e After calibration: y = x (R2 = 1) 

I 
I 

10 .. .  

8 • -

I 
4 ... 

2 

Calibration Gas Concentration, % O, 

Relationship between the analyzer readings and calibration gas or reference (0% O; for 

zero gas and 20.98% 0% for span gas) before and after calibration during the course of 

experiments. The two lines overlap. 
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2. Carbon dioxide analyzer 

20 ... 

-Zero before calibration 

.Span before calibration 

-Zero after calibration 

-Span after calibration 

11-Sep 21-Sep 1-Oct 11-Oct 21-Oct 31-Oct 10-Nov 20-Nov 30-Nov 

2250 

ri J- 1750 

H -1 1700 

1500 
10-0*c 

Behavior of the carbon dioxide (CO2) analyzer during zero (99.999% nitrogen) and 

span (2019 ppm CO; and nitrogen balance) gas calibrations during the course of 

experiments. The expected readings after zero and span gas calibrations were 0 and 

2019 ppm, respectively. 
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Carbon dioxide analyzer 

2200 

2000 

1800 -

1600 - • 

0* 1400.: 

S 1200 - • 

? 
=5 1000 -

s «00 -

I 600 -

400 -

200 •• 

-200 

o Before Cal • After Cal 

Before calibration: y = 0.9980% + 1.4516 (R* = 0.9989) 

After calibration: y = 0.9982* + 2.2258 (ff = 1) 

y-4 y y-1 H- y- ••f y y y y y y y-1 

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1600 1600 1700 1800 1900 2000 21 M 

Calibration Gas Concentration, ppm CO* 

Relationship between the analyzer readings and calibration gas or reference (0 ppm 

CO2 for zero gas and 2019 ppm CO2 for span gas) before and after calibration during 

the course of experiments. The two lines overlap. 
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APPENDIX 4. 

DYNAMIC PROFILES OF HEAT AND MOISTURE PRODUCTION OF 

PULLETS AND LAYERS DURING VARIOUS SELECTED TRIALS 
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Bird age (day) 

Dynamic profiles of total heat production rate (THP), respiratory quotient (HQ), and latent heat production rate of the bird (LHPWr,i) 
as % THP for ad-lib fed I-week old W-36 pullets under 30-32°C temperature and 35-50% relative humidity. Birds had water from 
nipple drinkers. THP and RQ arc averaged over four chambers while LHPbin, is averaged over two chambers. 
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LHP.oom (%THP) 

Dynamic profiles of total heat production rate (THP), respiratory quotient (RQ), and latent heat production rate of the room 
(LHPrMM) as % THP for ad-lib fed 1-week old W-36 pullets under 30-32"C temperature and 35-50% relative humidity. Birds had 
water from nipple drinkers. THP and RQ are averaged over four chambers while LHP,ooro is averaged over two chambers. 
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LHPttfd(%THP) 

Dynamic profiles of total heat production rate (THP), respiratory quotient (RQ), and latent heat production rate of the 6/r<# (LHPMrd) 
as % THP for ad-lib fed 1-week old W-98 pullets under 30-32°C temperature and 35-50% relative humidity. Birds had water from 
nipple drinkers. THP and RQ are averaged over four chambers while LHPbird is averaged over two chambers. 
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Dynamic profiles of total heat production rate (THP), respiratory quotient (RQ), and latent heat production rate of the room 
(LHP,**) as % THP for ad-lib fed 1-week old W-98 pullets under 30-32'C temperature and 35-50% relative humidity. Birds had 
water from nipple drinkers. THP and RQ are averaged over four chambers while LHProom is averaged over two chambers. 
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70 71 72 73 74 75 

Bird age (day) 

76 77 76 

Dynamic profiles of total heat production rate (THP), respiratory quotient (RQ), and latent heat production rate of the bird (LHPWrd) 
as % THP for ad-lib fed 10-week old W-36 pullets under 2I°C temperature and 35-50% relative humidity. Birds had water from 
nipple drinkers. THP and RQ are averaged over four chambers while LHPbird is averaged over two chambers. 
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LHRreom(%THP) 

Dynamic profiles of total heat production rate (THP), respiratory quotient (RQ), and latent heat production rate of the room 
(LHPrMM) as % THP for ad-lib fed 10-week old W-36 pullets under 21*C temperature and 35-50% relative humidity. Birds had water 
from nipple drinkers. THP and RQ are averaged over four chambers while LllProom is averaged over two chambers. 
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LHPblrt(%THP) 

Dynamic profiles of total heat production rate (THP), respiratory quotient (RQ), and latent heat production rate of the bird (LHPbird) 
as % THP for ad-lib fed 21-week old W-36 layers under 24"C temperature and 35-50% relative humidity. Birds had water from 
nipple drinkers. THP and RQ are averaged over four chambers while LHPbird is averaged over two chambers. 
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LHPreom(%THP) 

Dynamic profiles of total heat production rate (THP), respiratory quotient (RQ), and latent heat production rate of the room 
(LHPrMM) as % THP for ad-lib fed 21-week old W-36 layers under 24*C temperature and 35-50% relative humidity. Birds had water 
from nipple drinkers. THP and RQ are averaged over four chambers while LHProon, is averaged over two chambers. 
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Dynamic profiles of total heat production rate (THI ), respiratory quotient (RQ), and latent heat production rate of the bird (LHPbird) 
as % THP for ad-lib fed 37-week old W-36 layers under 24°C temperature and 35-50% relative humidity. Birds had water from 
nipple drinkers. THP and RQ are averaged over four chambers while LHFblrJ is averaged over two chambers. 
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of total heat production rate (THP), respiratory quotient (RQ), and latent heat production rate ol 
HP for ad-lib fed 37-week old W-36 layers under 24°C temperature and 35-50% relative humidit) 
ters. THP and RQ are averaged over four chambers while LHProom is averaged over two chambers 
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LHPKM(%THP) 

Bird age (day) 

Dynamic profiles of total heat production rate (THP), respiratory quotient (RQ), and latent heat production rate of the hint (LHl'bird) 
as % THP for ad-lib fed 64-week old W-36 layers under 24°C temperature and 35-50% relative humidity. Birds had water from 
nipple drinkers. THP and RQ are averaged over four chambers while LHPbiri| is averaged over two chambers. 
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LHPIOWB(%THP) 

Dynamic profiles of total heat production rate (THP), respiratory quotient (RQ), and latent heat production rate of the room 
(LHPfMM) as % THP for ad-lib fed 64-week old W-36 layers under 24"C temperature and 35-50% relative humidity. Birds had water 
from nipple drinkers. THP and RQ are averaged over four chambers while LHProero is averaged over two chambers. 
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